全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Calculating the Crystallite Size of Microsorum scolopendria AgCl Nanoparticles and Their Biological Activities

DOI: 10.4236/jbnb.2024.152002, PP. 25-37

Keywords: Microsorum scolopendria, SNPs, IR, UV-Vis, Antioxidant

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, AgCl nanoparticles were synthesized from Microsorum scolopendria (MS) aqueous extract and AgNO3 solution. Preliminary confirmation was a color change from a light brown to a dark-colored solution and a UV-Vis spectra surface plasmon resonance peak at 427 nm. Measured vibrational frequencies at 1713 cm−1 and 1030 cm−1 for C-O stretching of carboxylic acid or aliphatic ketone, and 1547 cm−1 for possibly N-O stretching of nitro compounds by Infrared (FTIR) analysis explain the possible biomaterial electronegative species or functional groups responsible for the reduction of Ag ( 1) to Ag (0) for the formation of MS-AgCl nanoparticles. XRD analysis studies revealed that these particles contained face-centered cubic crystallites of metallic AgCl of 100 % with an average calculated crystallite size range of 30.34 nm (SD = 5.10 nm) by Scherrer’s equation and a calculated crystallite size of 66.04 nm with a lattice strain of 0.00175 nm by Williamson Hall equation. The measured albumin denaturing activity of MS-AgCl nanoparticles gave an IC50 value of 26.70 µg/mL and 1.35 µg/mL for the positive control diclofenac. Additionally, the measured ability of phosphomolybdate complex formation, the antioxidant IC₅₀ value of MS-AgCl nanoparticles was 35.29 µg/mL, and positive control ascorbic acid was 13.91 µg/mL. In all, using MS fern frond aqueous extracts, this preliminary work confirms MS-AgCl nanoparticles as potential therapeutic agents for oxidative stress, inflammatory problems, and related diseases.

References

[1]  Thanh, N.T.K., Maclean, N. and Mahiddine, S. (2014) Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chemical Reviews, 114, 7610-7630.
https://doi.org/10.1021/cr400544s
[2]  Kedi, P.B.E., Nanga, C.C., Gbambie, A.P., et al. (2020) Biosynthesis of Silver Nanoparticles from Microsorum punctatum (L.) Copel Fronds Extract and an in-vitro Anti-Inflammation Study. Journal of Nanotechnology Research, 2, 25-41.
https://doi.org/10.26502/jnr.2688-85210014
[3]  Driskell, J.D., Larrick, C.G. and Trunell, C. (2014) Effect of Hydration on Plasmonic Coupling of Bioconjugated Gold Nanoparticles Immobilized on a Gold Film Probed by Surface-Enhanced Raman Spectroscopy. Langmuir, 30, 6309-6313.
https://doi.org/10.1021/la500640q
[4]  Sandler, S.E., Fellows, B. and Mefford, O.T. (2019) Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Analytical Chemistry, 91, 14159-14169.
https://doi.org/10.1021/acs.analchem.9b03518
[5]  Sanchez-Cano, C., Alvarez-Puebla, R.A., Abendroth, J.M., Beck, T., Blick, R., Cao, Y., Caruso, F., Chakraborty, I., Chapman, H.N., Chen, C., Cohen, B.E., Conceição, A.L., Cormode, D.P., Cui, D., Dawson, K.A., Falkenberg, G., Fan, C., Feliu, N., Gao, M., Parak, W.J., et al. (2021) X-Ray-Based Techniques to Study the Nano-Bio Interface. ACS Nano, 15, 3754-3807.
https://doi.org/10.1021/acsnano.0c09563
[6]  Holder, C.F. and Schaak, R.E. (2019) Tutorial on Powder X-Ray Diffraction for Characterizing Nanoscale Materials. ACS Nano, 13, 7359-7365.
https://doi.org/10.1021/acsnano.9b05157
[7]  Bushkova, V.S., Mudry, S.I., Yaremiy, I.P. and Kravets, V.I. (2016) X-Ray Analysis of Nickel-Cobalt Ferrite Nanoparticles by Using Debyeв-Scherrer, Williamsonв-Hall and SSP Methods. Journal of Physical Studies, 20, Article 1702.
https://doi.org/10.30970/jps.20.1702
[8]  Mustapha, S., Ndamitso, M.M., Abdulkareem, A.S., Tijani, J.O., Shuaib, D.T., Mohammed, A.K. and Sumaila, A. (2019) Comparative Study of Crystallite Size Using Williamson-Hall and Debye-Scherrer Plots for ZnO Nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10, Article 045013.
https://doi.org/10.1088/2043-6254/ab52f7
[9]  Balada, C., Díaz, V., Castro, M., Echeverría-Bugueño, M., Marchant, M.J. and Guzmán, L. (2022) Chemistry and Bioactivity of Microsorum scolopendria (Polypodiaceae): Antioxidant Effects on an Epithelial Damage Model. Molecules, 27, Article 5467.
https://doi.org/10.3390/molecules27175467
[10]  Shahidi, F. and Ambigaipalan, P. (2015) Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. Journal of Functional Foods, 18, 820-897.
https://doi.org/10.1016/j.jff.2015.06.018
[11]  Hu, M., Wu, B. and Liu, Z. (2017) Bioavailability of Polyphenols and Flavonoids in the Era of Precision Medicine. Molecular Pharmaceutics, 14, 2861-2863.
https://doi.org/10.1021/acs.molpharmaceut.7b00545
[12]  Wu, D., Zhou, J., Creyer, M.N., Yim, W., Chen, Z., Messersmith, P.B. and Jokerst, J.V. (2021) Phenolic-Enabled Nanotechnology: Versatile Particle Engineering for Biomedicine. Chemical Society Reviews, 50, 4432-4483.
https://doi.org/10.1039/d0cs00908c
[13]  Bogatyrov, V.M., Gun’ko, V.M., Galaburda, M.V., Oranska, O.I., Petryk, I.S., Tsyganenko, K.S., Savchuk, Y.I., Chobotarov, A.Y., Rudenchyk, T.V., Rozhnova, R.A. and Galatenko, N.A. (2019) The Effect of Photoactivated Transformations of Ag and Ag0 in Silica Fillers on Their Biocidal Activity. Research on Chemical Intermediates, 45, 3985-4001.
https://doi.org/10.1007/s11164-019-03885-2
[14]  Chick, C.N., Misawa-Suzuki, T., Suzuki, Y. and Usuki, T. (2020) Preparation and Antioxidant Study of Silver Nanoparticles of Microsorum pteropus Methanol Extract. Bioorganic & Medicinal Chemistry Letters, 30, Article 127526.
https://doi.org/10.1016/j.bmcl.2020.127526
[15]  Luhata, L.P., Chick, C.N., Mori, N., Tanaka, K., Uchida, H., Hayashita, T. and Usuki, T. (2022) Synthesis and Antioxidant Activity of Silver Nanoparticles Using the Odontonema strictum Leaf Extract. Molecules, 27, Article 3210.
https://doi.org/10.3390/molecules27103210
[16]  Meva, F.E.A., Mbeng, J.O.A., Ebongue, C.O., et al. (2019) Stachytarpheta cayennensis Aqueous Extract, a New Bioreactor towards Silver Nanoparticles for Biomedical Applications. Journal of Biomaterials and Nanobiotechnology, 10, 102-119.
https://doi.org/10.4236/jbnb.2019.102006
[17]  Wongsa, P., Phatikulrungsun, P. and Prathumthong, S. (2022) FT-IR Characteristics, Phenolic Profiles and Inhibitory Potential against Digestive Enzymes of 25 Herbal Infusions. Scientific Reports, 12, Article No. 6631.
https://doi.org/10.1038/s41598-022-10669-z
[18]  Delhez, R., de Keijser, T.H. and Mittemeijer, E.J. (1982) Determination of Crystallite Size and Lattice Distortions through X-Ray Diffraction Line Profile Analysis. Fresenius Zeitschrift für Analytische Chemie, 312, 1-16.
https://doi.org/10.1007/bf00482725
[19]  Rabiei, M., Palevicius, A., Monshi, A., Nasiri, S., Vilkauskas, A. and Janusas, G. (2020) Comparing Methods for Calculating Nano Crystal Size of Natural Hydroxyapatite Using X-Ray Diffraction. Nanomaterials, 10, Article 1627.
https://doi.org/10.3390/nano10091627
[20]  Kurian, M. and Kunjachan, C. (2014) Investigation of Size Dependency on Lattice Strain of Nanoceria Particles Synthesised by Wet Chemical Methods. International Nano Letters, 4, 73-80.
https://doi.org/10.1007/s40089-014-0122-7
[21]  Nath, D., Singh, F. and Das, R. (2019) X-Ray Diffraction Analysis by Williamson-Hall, Halder-Wagner and Size-Strain Plot Methods of Cdse Nanoparticles—A Comparative Study. Materials Chemistry and Physics, 239, Article 122021.
https://doi.org/10.1016/j.matchemphys.2019.122021
[22]  Novo, C., Funston, A.M. and Mulvaney, P. (2008) Direct Observation of Chemical Reactions on Single Gold Nanocrystals Using Surface Plasmon Spectroscopy. Nature Nanotechnology, 3, 598-602.
https://doi.org/10.1038/nnano.2008.246
[23]  Du, T., Zhang, J., Li, C., Song, T., Li, P., Liu, J., Du, X. and Wang, S. (2020) Gold/Silver Hybrid Nanoparticles with Enduring Inhibition of Coronavirus Multiplication through Multisite Mechanisms. Bioconjugate Chemistry, 31, 2553-2563.
https://doi.org/10.1021/acs.bioconjchem.0c00506
[24]  Medhi, R., Srinoi, P., Ngo, N., Tran, H.-V. and Lee, T.R. (2020) Nanoparticle-Based Strategies to Combat COVID-19. ACS Applied Nano Materials, 3, 8557-8580.
https://doi.org/10.1021/acsanm.0c01978
[25]  Ong, C.K.S., Lirk, P., Tan, C.H. and Seymour, R.A. (2007) An Evidence-Based Update on Nonsteroidal Anti-Inflammatory Drugs. Clinical Medicine & Research, 5, 19-34.
https://doi.org/10.3121/cmr.2007.698
[26]  Kumawat, M., Madhyastha, H., Singh, M., Revaprasadu, N., Srinivas, S.P. and Daima, H.K. (2022) Double Functionalized Haemocompatible Silver Nanoparticles Control Cell Inflammatory Homeostasis. PLOS ONE, 17, e0276296.
https://doi.org/10.1371/journal.pone.0276296
[27]  Dube, P., Meyer, S., Madiehe, A. and Meyer, M. (2020) Antibacterial Activity of Biogenic Silver and Gold Nanoparticles Synthesized from Salvia africana-lutea and Sutherlandia frutescens. Nanotechnology, 31, Article 505607.
https://doi.org/10.1088/1361-6528/abb6a8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133