|
具有 Stein-Weiss 卷积部分的临界椭圆型方程 的正解
|
Abstract:
本文研究了具有 Stein-Weiss 卷积部分的临界椭圆方程, (1) 其中 α ≥ 0,N > 4,0 < μ < N,0 < 2α + μ < 4,
且 ? 是 RN 中包含原点的C1 开有界域。我们证明了当 > 0 且 2 < p < 2?α,μ时,方程 (2) 存在一个正的基态解。
In this paper, we investigate the following critical elliptic equation with Stein-Weiss type convolution parts , (2) where α ≥ 0, N > 4, 0 < μ < N, 0 < 2α + μ < 4,
and ? is a C1 open bounded domain in RN that contains the origin. We show that when > 0 and 2 < p < 2?α,μ , problem (2) possesses a positive ground state solution.
[1] | Brézis, H. and Nirenberg, L. (1983) Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents. Communications on Pure and Applied Mathematics, 36, 437-477. https://doi.org/10.1002/cpa.3160360405 |
[2] | [ Capozzi, A., Fortunato, D. and Palmieri, G. (1985) An Existence Result for Nonlinear Elliptic Problems Involving Critical Sobolev Exponent. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 2, 463-470. https://doi.org/10.1016/s0294-1449(16)30395-x |
[3] | Guo, Z. (2016) Ground States for a Nonlinear Elliptic Equation Involving Multiple Hardy- Sobolev Critical Exponents. Advanced Nonlinear Studies, 16, 333-344. https://doi.org/10.1515/ans-2015-5023 |
[4] | Liu, F., Yang, J. and Yu, X. (2023) Positive Solutions to Multi-Critical Elliptic Problems. Annali di Matematica Pura ed Applicata, 202, 851-875. https://doi.org/10.1007/s10231-022-01262-2 |
[5] | Cao, D. and Peng, S. (2003) A Note on the Sign-Changing Solutions to Elliptic Problems with Critical Sobolev and Hardy Terms. Journal of Di?erential Equations, 193, 424-434. https://doi.org/10.1016/S0022-0396(03)00118-9 |
[6] | Gao, F. and Yang, M. (2018) The Brezis-Nirenberg Type Critical Problem for the Nonlinear Choquard Equation. Science China Mathematics, 61, 1219-1242. https://doi.org/10.1007/s11425-016-9067-5 |
[7] | Stein, E.M. and Weiss, G. (1958) Fractional Integrals on N-Dimensional Euclidean Space. Journal of Mathematics and Mechanics, 7, 503-514. https://doi.org/10.1512/iumj.1958.7.57030 |
[8] | Liu, S. (2009) Regularity, Symmetry, and Uniqueness of Some Integral Type Quasilinear E- quations. Nonlinear Analysis: Theory, Methods Applications, 71, 1796-1806. https://doi.org/10.1016/j.na.2009.01.014 |
[9] | Lei, Y. (2013) Qualitative Analysis for the Static Hartree-Type Equations. SIAM Journal on Mathematical Analysis, 45, 388-406. https://doi.org/10.1137/120879282 |
[10] | Du, L. and Yang, M. (2019) Uniqueness and Nondegeneracy of Solutions for a Critical Nonlocal Equation. Discrete and Continuous Dynamical Systems, 39, 5847-5866. https://doi.org/10.3934/dcds.2019219 |
[11] | Du, L., Gao, F. and Yang, M. (2022) On Elliptic Equations with Stein-Weiss Type Convolution Parts. Mathematische Zeitschrift, 301, 2185-2225. https://doi.org/10.1007/s00209-022-02973-1 |
[12] | Melgaard, M., Yang, M. and Zhou, X. (2022) Regularity, Symmetry and Asymptotic Behaviour of Solutions for Some Stein-Weiss-Type Integral Systems. Paci?c Journal of Mathematics, 317, 153-186. https://doi.org/10.2140/pjm.2022.317.153 |
[13] | Willem, M. (1996) Minimax Theorems. In: Progress in Nonlinear Di?erential Equations and Their Applications, Vol. 24, Birkh?user, Boston. |