%0 Journal Article
%T 具有 Stein-Weiss 卷积部分的临界椭圆型方程 的正解
Positive Solution for the Critical Elliptic Equation with Stein-Weiss Type Convolution Parts
%A 顾啸风
%J Advances in Applied Mathematics
%P 2110-2124
%@ 2324-8009
%D 2024
%I Hans Publishing
%R 10.12677/AAM.2024.135199
%X 本文研究了具有 Stein-Weiss 卷积部分的临界椭圆方程
, (1) 其中 α ≥ 0,N > 4,0 < μ < N,0 < 2α + μ < 4,
且 ? 是 RN 中包含原点的C1 开有界域。我们证明了当 > 0 且 2 < p < 2?α,μ时,方程 (2) 存在一个正的基态解。
In this paper, we investigate the following critical elliptic equation with Stein-Weiss type convolution parts
, (2) where α ≥ 0, N > 4, 0 < μ < N, 0 < 2α + μ < 4,
and ? is a C1 open bounded domain in RN that contains the origin. We show that when > 0 and 2 < p < 2?α,μ , problem (2) possesses a positive ground state solution.
%K 临界椭圆方程,Stein-Weiss 卷积项,Nehari 流形,基态解
Critical Elliptic Equation
%K Stein-Weiss Convolution Part
%K Nehari Manifold
%K Ground State Solution
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=87689