全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑实验误差的纠缠探测
Entanglement Detection Considering Experimental Inaccuracies

DOI: 10.12677/aam.2024.135207, PP. 2180-2190

Keywords: 纠缠探测,保真度,信息约束
Entanglement Detection
, Fidelity, Information Restriction

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了存在有限误差的实验测量进行的纠缠探测。这对应于这样一种场景,即测量设备没有得到完美控制,但以有限的不精确度运行。本文基于保真度这一概念对该误差进行量化。借助对量子相关性集合的信息约束来更有效地优化线性见证。展示了随着维度增加,误差对纠缠见证影响的趋势。制定了考虑不精确度的纠缠标准,并对该标准进一步优化,以此得到了纠缠见证更精确的上界。
This paper investigates entanglement detection in the presence of finite errors in experimental measurements. This corresponds to a scenario where measurement devices are not perfectly controlled but operate with finite inaccuracies. The paper quantifies these errors based on the concept of fidelity. It utilizes constraints on the information of the quantum correlation set to optimize linear witnesses more effectively. The trend of how errors affect entanglement witnesses is demonstrated as the dimension increases. Standards for entanglement considering inaccuracies are formulated, and these standards are further optimized to obtain more precise upper bounds for entanglement witnesses.

References

[1]  Gühne, O. and Tóth, G. (2009) Entanglement Detection. Physics Reports, 474, 1-75.
https://doi.org/10.1016/j.physrep.2009.02.004
[2]  Horodecki, R., Horodecki, P., Horodecki, M. and Horodecki, K. (2009) Quantum Entanglement. Reviews of Modern Physics, 81, 865-942.
https://doi.org/10.1103/RevModPhys.81.865
[3]  Friis, N., Vitagliano, G., Malik, M. and Huber, M. (2019) Entanglement Certification from Theory to Experiment. Nature Reviews Physics, 1, 72-87.
https://doi.org/10.1038/s42254-018-0003-5
[4]  Horodecki, M., Horodecki, P. and Horodecki, R. (1996) Separability of Mixed States: Necessary and Sufficient Conditions. Physics Letters A, 223, 1-8.
https://doi.org/10.1016/S0375-9601(96)00706-2
[5]  Terhal, B.M. (2000) Bell Inequalities and the Separability Criterion. Physics Letters A, 271, 319-326.
https://doi.org/10.1016/S0375-9601(00)00401-1
[6]  Lewenstein, M., Kraus, B., Cirac, J.I. and Horodecki, P. (2000) Optimization of Entanglement Witnesses. Physical Review A, 62, Article 052310.
https://doi.org/10.1103/PhysRevA.62.052310
[7]  Seevinck, M. and Uffink, J. (2007) Local Commutativity versus Bell Inequality Violation for Entangled States and versus Non-Violation for Separable States. Physical Review A, 76, Article 042105.
https://doi.org/10.1103/PhysRevA.76.042105
[8]  Rosset, D., Ferretti-Sch?bitz, R., Bancal, J.-D., Gisin, N. and Liang, Y.-C. (2012) Imperfect Measurement Settings: Implications for Quantum State Tomography and Entanglement Witnesses. Physical Review A, 86, Article 062325.
https://doi.org/10.1103/PhysRevA.86.062325
[9]  Bancal, J.-D., Gisin, N., Liang, Y.-C. and Pironio, S. (2011) Device Independent Witnesses of Genuine Multipartite Entanglement. Physical Review Letters, 106, Article 250404.
https://doi.org/10.1103/PhysRevLett.106.250404
[10]  Moroder, T., Bancal, J.-D., Liang, Y.-C., Hofmann, M. and Gühne, O. (2013) Device-Independent Entanglement Quantification and Related Applications. Physical Review Letters, 111, Article 030501.
https://doi.org/10.1103/PhysRevLett.111.030501
[11]  Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. and Wehner, S. (2014) Bell Nonlocality. Reviews of Modern Physics, 86, 419-478.
https://doi.org/10.1103/RevModPhys.86.419
[12]  Werner, R.F. (1989) Quantum States with Einstein-Podolsky-Rosen Correlations Admitting a Hidden-Variable Model. Physical Review A, 40, 4277-4281.
https://doi.org/10.1103/PhysRevA.40.4277
[13]  Augusiak, R., Demianowicz, M. and Acín, A. (2014) Local Hidden-Variable Models for Entangled Quantum States. Journal of Physics A: Mathematical and Theoretical, 47, Article 424002.
https://doi.org/10.1088/1751-8113/47/42/424002
[14]  Wiseman, H.M., Jones, S.J. and Doherty, A.C. (2007) Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox. Physical Review Letters, 98, Article 140402.
https://doi.org/10.1103/PhysRevLett.98.140402
[15]  Tavakoli, A., Abbott, A.A., Renou, M.-O., Gisin, N. and Brunner, N. (2022) Semi-Device-Independent Characterization of Multipartite Entanglement of States and Measurements. Physical Review A, 98, Article 052333.
https://doi.org/10.1103/PhysRevA.98.052333
[16]  Dada, A.C., Leach, J., Buller, G.S., Padgett, M.J. and Andersson, E. (2011) Experimental High-Dimensional Two-Photon Entanglement and Violations of Generalized Bell Inequalities. Nature Physics, 7, 677-680.
https://doi.org/10.1038/nphys1996
[17]  Erhard, M., Krenn, M. and Zeilinger, A. (2020) Experimental High-Dimensional Two-Photon Entanglement and Violations of Generalized Bell Inequalities. Nature Reviews Physics, 2, 365-381.
https://doi.org/10.1038/s42254-020-0193-5
[18]  Ecker, S., Bouchard, F., Bulla, L., Brandt, F., Kohout, O., Steinlechner, F., Fickler, R., Malik, M., Guryanova, Y., Ursin, R. and Huber, M. (2019) Experimental High-Dimensional Two-Photon Entanglement and Violations of Generalized Bell Inequalities. Physical Review X, 9, Article 041042.
https://doi.org/10.1103/PhysRevX.9.041042
[19]  Valencia, N.H., Srivastav, V., Pivoluska, M., Huber, M., Friis, N., McCutcheon, W. and Malik, M. (2020) High-Dimensional Pixel Entanglement: Efficient Generation and Certification. Quantum, 4, 376.
https://doi.org/10.22331/q-2020-12-24-376
[20]  Hu, X.-M., Xing, W.-B., Liu, B.-H., Huang, Y.-F., Li, C.-F., Guo, G.-C., Erker, P. and Huber, M. (2020) Efficient Generation of High-Dimensional Entanglement through Multipath Down-Conversion. Physical Review Letters, 125, Article 090503.
https://doi.org/10.1103/PhysRevLett.125.090503
[21]  Bouchard, F., Valencia, N.H., Brandt, F., Fickler, R., Huberand, M. and Malik, M. (2018) Measuring Azimuthal and Radial Modes of Photons. Optics Express, 26, 31925-31941.
https://doi.org/10.1364/OE.26.031925
[22]  Spengler, C., Huber, M., Brierley, S., Adaktylos, T. and Hiesmayr, B.C. (2012) Entanglement Detection via Mutually Unbiased Bases. Physical Review A, 86, Article 022311.
https://doi.org/10.1103/PhysRevA.86.022311
[23]  Bertlmann, R.A. and Krammer, P. (2008) Bloch Vectors for Qudits. Journal of Physics A: Mathematical and Theoretical, 41, Article 235303.
https://doi.org/10.1088/1751-8113/41/23/235303
[24]  Morelli, S., Yamasaki, H., Huber, M. and Tavakoli, A. (2022) Entanglement Detection with Imprecise Measurements. Physical Review Letters, 128, Article 250501.
https://doi.org/10.1103/PhysRevLett.128.250501
[25]  Navascués, M., Pironio, S. and Acín, A. (2008) A Convergent Hierarchy of Semidefinite Programs Characterizing the Set of Quantum Correlations. New Journal of Physics, 10, Article 073013.
https://doi.org/10.1088/1367-2630/10/7/073013
[26]  Burgdorf, S., Cafuta, K., Klep, I. and Povh, J. (2013) The Tracial Moment Problem and Trace-Optimization of Polynomials. Mathematical Programming, 137, 557-578.
https://doi.org/10.1007/s10107-011-0505-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133