%0 Journal Article
%T 考虑实验误差的纠缠探测
Entanglement Detection Considering Experimental Inaccuracies
%A 罗晓旭
%A 贺衎
%J Advances in Applied Mathematics
%P 2180-2190
%@ 2324-8009
%D 2024
%I Hans Publishing
%R 10.12677/aam.2024.135207
%X 本文研究了存在有限误差的实验测量进行的纠缠探测。这对应于这样一种场景,即测量设备没有得到完美控制,但以有限的不精确度运行。本文基于保真度这一概念对该误差进行量化。借助对量子相关性集合的信息约束来更有效地优化线性见证。展示了随着维度增加,误差对纠缠见证影响的趋势。制定了考虑不精确度的纠缠标准,并对该标准进一步优化,以此得到了纠缠见证更精确的上界。
This paper investigates entanglement detection in the presence of finite errors in experimental measurements. This corresponds to a scenario where measurement devices are not perfectly controlled but operate with finite inaccuracies. The paper quantifies these errors based on the concept of fidelity. It utilizes constraints on the information of the quantum correlation set to optimize linear witnesses more effectively. The trend of how errors affect entanglement witnesses is demonstrated as the dimension increases. Standards for entanglement considering inaccuracies are formulated, and these standards are further optimized to obtain more precise upper bounds for entanglement witnesses.
%K 纠缠探测,保真度,信息约束
Entanglement Detection
%K Fidelity
%K Information Restriction
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=87781