|
带导数耦合Schr?dinger方程组的适定性
|
Abstract:
带导数非线性Schr?dinger方程描述了极化Alfvén波在恒定磁场下磁化等离子体的传播。本文研究带导数耦合Schr?dinger方程组的Cauchy问题。利用傅里叶限制范数方法,得到了初始值在Hs(R)×Hs(R)(s>12)中的局部适定性。
The derivative nonlinear Schr?dinger equation describes the propagation of circular polarized Alfvén waves in a magnetized plasma under a constant magnetic field. In this paper, we study the Cauchy problem of the coupled Schr?dinger equations with derivative. Using the Fourier restriction norm method, we obtain the local well-posedness for initial data inHs(R)×Hs(R)(s>12).
[1] | Agrawal, G.P. (2001) Nonlinear Fiber Optics. Academic Press, New York. |
[2] | Hasegawa, A. and Kodama, Y. (1995) Solitons in Optical Communications. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780198565079.001.0001 |
[3] | Hisakado, M., Iizuka, T. and Wadati, M. (1994) Coupled Hybrid Nonlinear Schr?dinger Equation and Optical Solitons. Journal of the Physical Society of Japan, 63, 2887-2894. https://doi.org/10.1143/JPSJ.63.2887 |
[4] | Hisakado, M. and Wadati, M. (1995) Integrable Multi-Component Hybrid Nonlinear Schr?dinger Equations. Journal of the Physical Society of Japan, 64, 408-413. https://doi.org/10.1143/JPSJ.64.408 |
[5] | Zhang, H.-L. (2013) Energy-Exchange Collisions of Vector Solitons in the N-Coupled Mixed Derivative Nonlinear Schr?dinger Equations from the Birefringent Optical Fibers. Optics Communications, 29, 141-145. https://doi.org/10.1016/j.optcom.2012.10.011 |
[6] | Mio, W., Ogino, T., Minami, K. and Takeda, S. (1976) Modified Nonlinear Schr?dinger for Alfvén Waves Propagating along the Magnetic Field in Cold Plasma. Journal of the Physical Society of Japan, 41, 265-271. https://doi.org/10.1143/JPSJ.41.265 |
[7] | Mjolhus, E. (1976) On the Modulational Instability of Hydromagnetic Waves Parallel to the Magnetic Field. Journal of Plasma Physics, 16, 321-334. https://doi.org/10.1017/S0022377800020249 |
[8] | Sulem, C. and Sulem, P.-L. (1999) The Nonlinear Schr?dinger Equation: Self-Focusing and Wave Collapse. Applied Mathematical Sciences, Vol. 139, Springer, New York, 1-347. |
[9] | Zhang, H.-Q., Tian, B., Lü, X., Li, H. and Meng, X.-H. (2009) Soliton Interaction in the Coupled Mixed Derivative Nonlinear Schr?dinger Equations. Physics Letters A, 373, 4315-4321. https://doi.org/10.1016/j.physleta.2009.09.010 |
[10] | Chen, Y.M. (1960) The Initial-Boundary Value Problem for a Class of Nonlinear Schr?dinger Equations. Acta Mathematica Scientia, 6, 405-418. https://doi.org/10.1016/S0252-9602(18)30500-9 |
[11] | Guo, B.L. and Tan, S.B. (1991) On Smooth Solutions to the Initial Value Problem for the Mixed Nonlinear Schr?dinger Equations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 119, 31-45. https://doi.org/10.1017/S0308210500028298 |
[12] | Tan, S.B. and Zhang, L.H. (1994) On a Weak Solution of the Mixed Schr?dinger Equations. Journal of Mathematical Analysis and Applications, 182, 409-421. https://doi.org/10.1006/jmaa.1994.1095 |
[13] | Takaoka, H. (1999) Well-Posedness for the One Dimensional Schr?dinger Equation with the Derivative Nonlinearity. Advances in Differential Equations, 4, 561-680. https://doi.org/10.57262/ade/1366031032 |
[14] | Biagioni, H. and Linares, F. (2001) Ill-Posedness for the Derivative Schr?dinger and Generalized Benjamin-Ono Equations. Transactions of the American Mathematical Society, 353, 3649-3659. https://doi.org/10.1090/S0002-9947-01-02754-4 |
[15] | Wu, Y.F. (2013) Global Well-Posedness of the Derivative Nonlinear Schr?dinger Equations in Energy Space. Analysis & PDE, 6, 1989-2002. https://doi.org/10.2140/apde.2013.6.1989 |
[16] | Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T. (2002) A Refined Global Well-Posedness Result for Schr?dinger Equations with Derivatives. SIAM Journal on Mathematical Analysis, 34, 64-86. https://doi.org/10.1137/S0036141001394541 |
[17] | Colliander, J., Keel, M., Staffilani, G., Takaoka, H. and Tao, T. (2001) Global Well-Posedness Result for Schr?dinger Equations with Derivative. SIAM Journal on Mathematical Analysis, 33, 649-669. https://doi.org/10.1137/S0036141001384387 |
[18] | Herr, S. (2006) On the Cauchy Problem for the Derivative Nonlinear Schr?dinger Equation with Periodic Boundary Condition. International Mathematics Research Notices, 2006, O96763. https://doi.org/10.1155/IMRN/2006/96763 |
[19] | Takaoka, H. (2001) Global Well-Posedness for Schr?dinger Equations with Derivative in a Nonlinear Term and Data in Low-Order Sobolev Spaces. Electronic Journal of Differential Equations, 42, 1-23. |
[20] | Wang, B.X., Han, L.J. and Huang, C.Y. (2009) Global Well-Posedness and Scattering for the Derivative Nonlinear Schr?dinger Equation with Small Rough Data. Annales de l’Institut Henri Poincaré C, Analyse non Linéaire, 26, 2253-2281. https://doi.org/10.1016/j.anihpc.2009.03.004 |
[21] | Bourgain, J. (1993) Fourier Restriction Phenomena for Certain Lattice Subsets and Applications to Nonlinear Evolution Equations: Part I: Schr?dinger Equations, Part II: The KDV-Equation. Geometric & Functional Analysis GAFA, 3, 107-156, 209-262. https://doi.org/10.1007/BF01895688 |
[22] | Kenig, C.E., Ponce, G. and Vega, L. (1993) The Cauchy Problem for the Korteweg-de Vries Equation in Sobolev Spaces of Negative Indices. Duke Mathematical Journal, 71, 1-21. https://doi.org/10.1215/S0012-7094-93-07101-3 |
[23] | Kenig, C.E., Ponce, G. and Vega, L. (1996) A Bilinear Estimate with Applications to the KDV Equation. Journal of the American Mathematical Society, 9, 573-603. https://doi.org/10.1090/S0894-0347-96-00200-7 |
[24] | Kenig, C.E., Ponce, G. and Vega, L. (1991) Oscillatory Integrals and Regularity of Dispersive Equations. Indiana University Mathematics Journal, 40, 33-69. https://doi.org/10.1512/iumj.1991.40.40003 |