%0 Journal Article %T 带导数耦合SchrÖdinger方程组的适定性
Well-Posedness for the Coupled SchrÖdinger Equations with Derivative %A 李巧欣 %A 顾月 %J Advances in Applied Mathematics %P 2087-2095 %@ 2324-8009 %D 2024 %I Hans Publishing %R 10.12677/aam.2024.135196 %X 带导数非线性Schr?dinger方程描述了极化Alfvén波在恒定磁场下磁化等离子体的传播。本文研究带导数耦合Schr?dinger方程组的Cauchy问题。利用傅里叶限制范数方法,得到了初始值在Hs(R)×Hs(R)(s>12)中的局部适定性。
The derivative nonlinear Schr?dinger equation describes the propagation of circular polarized Alfvén waves in a magnetized plasma under a constant magnetic field. In this paper, we study the Cauchy problem of the coupled Schr?dinger equations with derivative. Using the Fourier restriction norm method, we obtain the local well-posedness for initial data inHs(R)×Hs(R)(s>12). %K 带导数耦合SchrÖ %K dinger方程组,傅里叶限制范数方法,局部适定性
The Coupled SchrÖ %K dinger Equations with Derivative %K Fourier Restriction Norm Method %K Local Well-Posedness %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=87573