%0 Journal Article
%T 带导数耦合SchrÖdinger方程组的适定性
Well-Posedness for the Coupled SchrÖdinger Equations with Derivative
%A 李巧欣
%A 顾月
%J Advances in Applied Mathematics
%P 2087-2095
%@ 2324-8009
%D 2024
%I Hans Publishing
%R 10.12677/aam.2024.135196
%X 带导数非线性Schr?dinger方程描述了极化Alfvén波在恒定磁场下磁化等离子体的传播。本文研究带导数耦合Schr?dinger方程组的Cauchy问题。利用傅里叶限制范数方法,得到了初始值在Hs(R)×Hs(R)(s>12)中的局部适定性。
The derivative nonlinear Schr?dinger equation describes the propagation of circular polarized Alfvén waves in a magnetized plasma under a constant magnetic field. In this paper, we study the Cauchy problem of the coupled Schr?dinger equations with derivative. Using the Fourier restriction norm method, we obtain the local well-posedness for initial data inHs(R)×Hs(R)(s>12).
%K 带导数耦合SchrÖ
%K dinger方程组,傅里叶限制范数方法,局部适定性
The Coupled SchrÖ
%K dinger Equations with Derivative
%K Fourier Restriction Norm Method
%K Local Well-Posedness
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=87573