全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

坎特伯雷难题集中全一数R19是素数的证明
Proof That Repunit R19 in the Canterbury Problem Set Is a Prime Number

DOI: 10.12677/aam.2024.135193, PP. 2062-2068

Keywords: 全一数R19,素数,Mathematica12.0,个人计算机
Repunit R19
, Prime Number, Mathematica12.0, Personal Computer

Full-Text   Cite this paper   Add to My Lib

Abstract:

一个正整数的素性判别是数论中一个有意义和有兴趣的问题,全一数R19是否是一个素数的问题虽在文献中提到已被用n?1法解决,但国内一直未见有证明方法的介绍,本文借助于数学软件Mathematica12.0用个人计算机证明了坎特伯雷难题集中全一数R19是一个素数。这对证明其他整数的素性判定提供了一个参考。
The primality criterion of a positive integer is a meaningful and interesting problem in number theory. Although the question of whether Repunit R19 is a prime has been solved by then?1method in literature, there is no introduction to a proven method in China. This article uses the mathematical software Mathematical12.0 to prove on a personal computer that the Repunit R19 in the Canterbury problem set is a prime number. This provides a reference for proving the primality of other integers.

References

[1]  Lucas, E. (1876) Sur la recherche des grands nombres premiers. Association Fran?aise pour l'Avancement des Sciences, 5, 61-68.
[2]  Décaillot, A.M. and Lucas, L.é. (1998) Théorie Instrumentation. Revue d'Histoire des Mathématiques, No. 2, 191-236.
[3]  Lehmer, D.H. (1927) Test for Primality by Converse of Fermat’s Theorem. Bulletin of the American Mathematical Society, 33, 327-340.
[4]  Derrick Henry Lehmer (1905-1991) Biography, MacTutor History of Mathematics Archive.
https://mathshistory.st-andrews.ac.uk/Biographies/Lehmer_Derrick/
[5]  Brillhart, J., Lehmer, D.H. and Selfridge, J.L. (1975) New Primality Criteria and Factorization of 2^m±1. Mathematics of Computation, 29, 620-647.
https://doi.org/10.2307/2005583
[6]  Pocklington, H.C. (1914) The Determination of the Prime or Composite Nature of Large Numbers by Fermat’s Theorem.
[7]  孙琦, 旷京华. 素数判定与大数分解[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.
[8]  刘醉白. 素数证明: 在满足费马小定理的部分条件下, 结合图中条件, 请问如何证明n是一个素数? [EB/OL].
https://www.zhihu.com/answer/574767625, 2024-04-25.
[9]  (英)亨利?杜德尼. 坎特伯雷趣题[M]. 陈以鸿, 译. 上海: 上海科技教育出版社, 2007.
[10]  Wells, D. (2005) Prime Numbers, the Most Mysterious Figures in Math. Wiley, Hoboken.
[11]  Ribenboim, P. (2006) The Little Book of Bigger Primes. Springer-Verlag, New York.
[12]  颜松远. 计算数论[M]. 第二版. 杨思熳, 刘巍, 齐璐璐, 陶红伟, 译. 北京: 清华大学出版社, 2008.
[13]  Yates, S. (1982) Repunits and Repetends. Star Publishing Co. Inc., Boynton Beach.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133