%0 Journal Article %T 坎特伯雷难题集中全一数R19是素数的证明
Proof That Repunit R19 in the Canterbury Problem Set Is a Prime Number %A 冯贝叶 %J Advances in Applied Mathematics %P 2062-2068 %@ 2324-8009 %D 2024 %I Hans Publishing %R 10.12677/aam.2024.135193 %X 一个正整数的素性判别是数论中一个有意义和有兴趣的问题,全一数R19是否是一个素数的问题虽在文献中提到已被用n?1法解决,但国内一直未见有证明方法的介绍,本文借助于数学软件Mathematica12.0用个人计算机证明了坎特伯雷难题集中全一数R19是一个素数。这对证明其他整数的素性判定提供了一个参考。
The primality criterion of a positive integer is a meaningful and interesting problem in number theory. Although the question of whether Repunit R19 is a prime has been solved by then?1method in literature, there is no introduction to a proven method in China. This article uses the mathematical software Mathematical12.0 to prove on a personal computer that the Repunit R19 in the Canterbury problem set is a prime number. This provides a reference for proving the primality of other integers. %K 全一数R19,素数,Mathematica12.0,个人计算机
Repunit R19 %K Prime Number %K Mathematica12.0 %K Personal Computer %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=87570