|
Pure Mathematics 2024
分担超平面的全纯曲线族的正规定则
|
Abstract:
本文利用值分布理论和正规族理论等相关知识,研究了全纯曲线族分担处于次一般位置的超平面的正规定则。设?是一族从区域D??到?3(?)的全纯曲线,Hl={x∈P3(C):?x,αl?=0}≠H0是?3(?)中k个处于t次一般位置的超平面,其中αl=(αl0,αl1,αl2,αl3)T,l=1,2,?,k,H0={x0=0},t≥3,k=min{p:2t1≤p≤3t1,[p?t3]≤(p?2t?1)}。如果对任意的f∈?,满足:f(z)∈Hl当且仅当?f(z)∈Hl;若f(z)∈∪t=1kHl,那么|?f(z),H0?|||f(z)|?|H0||≥δ,其中0<δ<1是一个常数,则?在D上正规。
Based on value distribution theory and normal family theory, the normality of hyperplanes in sub-general position shared by holomorphic curve families is considered. Let?be a family of holomorphic maps of a domainD??to?3(?). LetHl={x∈P3(C):?x,αl?=0}≠H0be hyperplanes in?3(?)located in general position, whereαl=(αl0,αl1,αl2,αl3)T,l=1,2,?,k,H0={x0=0},k=min{p:2t1≤p≤3t1,[p?t3]≤(p?2t?1)}. Assume the following conditions hold for everyf∈?: if and only iff(z)∈Hl, then?f(z)∈Hl; Iff(z)∈∪t=1kHl, then|?f(z),H0?|||f(z)|?|H0||≥δ, where0<δ<1is a constant. Then?is normal on D.
[1] | Ye, Y.S., Pang, X.C. and Yang, L. (2015) An Extension of Schwick’s Theorem for Normal Families. Annales Polonici Mathematici, 115, 23-31. https://doi.org/10.4064/ap115-1-2 |
[2] | 刘晓俊, 庞学诚, 杨锦华. 涉及分担超平面的正规定则[J]. 数学年刊A辑(中文版), 2021, 42(2): 171-178. |
[3] | Liu, X.J. and Pang, X.C. (2020) Shared Hyperplanes and Normal Families of Holomorphic Curves. International Journal of Mathematics, 31, 2050037. https://doi.org/10.1142/S0129167X20500378 |
[4] | 郑晓杰, 刘晓俊. 全纯曲线正规族分担超平面[J]. 上海理工大学学报, 2021, 43(6): 523-527. |
[5] | 范楚君, 刘晓俊. 涉及导曲线与分担超平面的正规定则[J]. 上海理工大学学报, 2022, 44(5): 490-496. |
[6] | Ru, M. (2001) Nevanlinna Theory and Its Relation to Diophantine Approximation. World Scientific Publishing, Singapore. https://doi.org/10.1142/9789812810519 |
[7] | 杨刘. 到复射影空间的全纯映射及亚纯映射的正规性和值分布[D]: [博士学位论文]. 上海: 华东师范大学, 2016. |
[8] | Aladro, G. and Krantz, S.G. (1991) A Criterion for Normality in Cn. Journal of Mathematical Analysis and Applications, 161, 1-8. https://doi.org/10.1016/0022-247X(91)90356-5 |
[9] | Eremenko, A. (1999) A Picard Type Theorem for Holomorphic Curves. Periodica Mathematica Hungarica, 38, 39-42. https://doi.org/10.1023/A:1004794914744 |
[10] | 顾永兴, 庞学诚, 方明亮. 正规族理论及其应用[M]. 北京: 科学出版社, 2007. |