%0 Journal Article
%T 分担超平面的全纯曲线族的正规定则
Normal Criteria Concerning Shared Hyperplanes for Families of Holomorphic Curves
%A 王睿为
%A 刘晓俊
%J Pure Mathematics
%P 172-181
%@ 2160-7605
%D 2024
%I Hans Publishing
%R 10.12677/pm.2024.145174
%X 本文利用值分布理论和正规族理论等相关知识,研究了全纯曲线族分担处于次一般位置的超平面的正规定则。设?是一族从区域D??到?3(?)的全纯曲线,Hl={x∈P3(C):?x,αl?=0}≠H0是?3(?)中k个处于t次一般位置的超平面,其中αl=(αl0,αl1,αl2,αl3)T,l=1,2,?,k,H0={x0=0},t≥3,k=min{p:2t1≤p≤3t1,[p?t3]≤(p?2t?1)}。如果对任意的f∈?,满足:f(z)∈Hl当且仅当?f(z)∈Hl;若f(z)∈∪t=1kHl,那么|?f(z),H0?|||f(z)|?|H0||≥δ,其中0<δ<1是一个常数,则?在D上正规。
Based on value distribution theory and normal family theory, the normality of hyperplanes in sub-general position shared by holomorphic curve families is considered. Let?be a family of holomorphic maps of a domainD??to?3(?). LetHl={x∈P3(C):?x,αl?=0}≠H0be hyperplanes in?3(?)located in general position, whereαl=(αl0,αl1,αl2,αl3)T,l=1,2,?,k,H0={x0=0},k=min{p:2t1≤p≤3t1,[p?t3]≤(p?2t?1)}. Assume the following conditions hold for everyf∈?: if and only iff(z)∈Hl, then?f(z)∈Hl; Iff(z)∈∪t=1kHl, then|?f(z),H0?|||f(z)|?|H0||≥δ, where0<δ<1is a constant. Then?is normal on D.
%K 正规族,全纯曲线,分担超平面,导曲线
Normal Family
%K Holomorphic Curve
%K Shared Hyperplanes
%K Derived Curves
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=87577