全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器学习的股票价格预测研究
Research on Stock Price Prediction Based on Machine Learning

DOI: 10.12677/ecl.2024.132275, PP. 2253-2258

Keywords: 股票价格预测,ARIMA,LSTM,支持向量机
Stock Price Prediction
, ARIMA, LSTM, Support Vector Machine

Full-Text   Cite this paper   Add to My Lib

Abstract:

股票价格预测可以提供有关未来市场走势的信息,对投资者而言具有十分重要的影响,将机器学习引入股票价格预测中,有助于投资者制定更明智的投资决策。基于此,本文随机选取了一只股票——中国银行在2018年11月16日~2023年11月15日期间的数据作为样本,通过ARIMA模型、支持向量机(SVM)模型、LSTM模型对其股价走势进行预测,最后得出基于LSTM模型的深度神经网络模型具有较好的预测精度。
Stock price prediction can provide information about the future market trend, which has a very important impact on investors. Introducing machine learning into stock price prediction can help investors make more intelligent investment decisions. Based on this, this paper randomly selects the data of a stock—Bank of China from November 16, 2018 to November 15, 2023 as a sample, and predicts its stock price trend through ARIMA model, support vector machine (SVM) model and LSTM model. Finally, it is concluded that the deep neural network model based on LSTM model has better prediction accuracy.

References

[1]  Fama, E.F. (1965) The Behavior of Stock-Market Prices. The Journal of Business, 38, 34-105.
https://doi.org/10.1086/294743
[2]  Box, G., Jenkins, G.M., Reinsel, G.C., et al. (2015) Time Series Analysis: Forecasting and Control. 5th Edition. Wiley, New York.
[3]  闫宇, 吴海涛. 基于ARIMA模型的纳斯达克指数短期预测[J]. 信息与电脑, 2020(20): 155-158.
[4]  Vapnik, V.N. and Chervonenkis, A.Y. (1968) On the Uniform Convergence of Relative Frequencies of Event to Their Probabilities. Soviet Math Dokl, 9, 915-918.
[5]  Muller, K.R., Smola, A.J., Rtsch, G., et al. (1997) Predicting Time Series with Support Vector Machines. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD., Eds., Artificial Neural NetworksICANN'97. ICANN 1997. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 999-1004.
https://doi.org/10.1007/BFb0020283
[6]  Pai, P.-F. and Lin, C.-S. (2005) A Hybrid ARIMA and Support Vector Machines Model in Stock Price Forecasting. Omega, 33, 497-505.
https://doi.org/10.1016/j.omega.2004.07.024
[7]  阎威武, 邵惠鹤. 支持向量机和最小二乘支持向量机的比较及应用研究[J]. 控制与决策, 2003(3): 358-360.
[8]  顾红其. 支持向量机在期货价格预测中的应用研究[J]. 计算机仿真, 2010, 27(12): 358-360 385.
[9]  张玉, 尹腾飞. 支持向量机在税收预测中的应用研究[J]. 计算机仿真, 2011, 28(9): 357-360.
[10]  周凌寒. 基于LSTM和投资者情绪的股票行情预测研究[D]: [硕士学位论文]. 武汉: 华中师范大学, 2018.
[11]  陆泽楠, 商玉林. 基于LSTM神经网络模型的钢铁价格预测[J]. 科技视界, 2017(13): 116-117.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133