|
重复经颅磁刺激治疗脊髓小脑共济失调的研究进展
|
Abstract:
脊髓小脑共济失调(spinocerebellar ataxia, SCA)是一种常染色体显性遗传疾病,以进行性平衡和协调能力障碍为主要特征,常表现为步态共济失调、运动障碍和构音障碍,严重影响患者的生活质量,增加患者的心理和经济负担。一直以来,SCA缺乏有效的治疗方法,近年来应用重复经颅磁刺激(Repetitive Transcranial Magnetic Stimulation, rTMS)治疗SCA取得了一定疗效,本文对重复经颅磁刺激治疗脊髓小脑共济失调的研究进展综述,以期提高对脊髓小脑共济失调新治疗方式的认识。
Spinocerebellar ataxia (SCA) is an autosomal dominant genetic disease, which is mainly characterized by progressive balance and coordination disorders, often manifested as gait ataxia, movement disorders and dysarthria, which seriously affects the quality of life of patients and increases their psychological and economic burden. In recent years, repetitive transcranial magnetic stimulation (rTMS) has been used to treat SCA, and this article reviews the research progress of repetitive transcranial magnetic stimulation in the treatment of spinocerebellar ataxia, in order to improve the understanding of new treatment modalities for spinocerebellar ataxia.
[1] | De Oliveira Scott, S.S., Pedroso, J.L., Barsottini, O.G.P., et al. (2020) Natural History and Epidemiology of the Spinocerebellar Ataxias: Insights from the First Description to Nowadays. Journal of the Neurological Sciences, 417, Article 117082. https://doi.org/10.1016/j.jns.2020.117082 |
[2] | Rossini, P.M., Burke, D., Chen, R., et al. (2015) Non-Invasive Electrical and Magnetic Stimulation of the Brain, Spinal Cord, Roots and Peripheral Nerves: Basic Principles and Procedures for Routine Clinical and Research Application. An Updated Report from an I.F.C.N. Committee. Clinical Neurophysiology, 126, 1071-1107. https://doi.org/10.1016/j.clinph.2015.02.001 |
[3] | Epstein, C.M., Wassermann, E.M. and Ziemann, U. (2011) The Oxford Handbook of Transcranial Stimulation. Oxford University Press, Oxford. https://doi.org/10.1093/oxfordhb/9780198568926.001.0001 |
[4] | Lefaucheur, J.-P., Aleman, A., Baeken, C., et al. (2020) Evidence-Based Guidelines on the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation (rTMS): An Update (2014-2018). Clinical Neurophysiology, 131, 474-528. https://doi.org/10.1016/j.clinph.2019.11.002 |
[5] | Rossini, P.M. and Caramia, M.D. (1992) Central Conduction Studies and Magnetic Stimulation. Current Opinion in Neurology and Neurosurgery, 5, 697-703. |
[6] | Barbier, M., Bahlo, M., Pennisi, A., et al. (2022) Heterozygous PNPT1 Variants Cause Spinocerebellar Ataxia Type 25. Annals of Neurology, 92, 122-137. https://doi.org/10.1002/ana.26366 |
[7] | Sullivan, R., Yau, W.Y., O’Connor, E. and Houlden, H. (2019) Spinocerebellar Ataxia: An Update. Journal of Neurology, 266, 533-544. https://doi.org/10.1007/s00415-018-9076-4 |
[8] | Kass, R.S. (2005) The Channelopathies: Novel Insights into Molecular and Genetic Mechanisms of Human Disease. The Journal of Clinical Investigation, 115, 1986-1989. https://doi.org/10.1172/JCI26011 |
[9] | Binda, F., Pernaci, C. and Saxena, S. (2020) Cerebellar Development and Circuit Maturation: A Common Framework for Spinocerebellar Ataxias. Frontiers in Neuroscience, 14, Article 293. https://doi.org/10.3389/fnins.2020.00293 |
[10] | Coutelier, M., Coarelli, G., Monin, M.L., et al. (2017) A Panel Study on Patients with Dominant Cerebellar Ataxia Highlights the Frequency of Channelopathies. Brain, 140, 1579-1594. https://doi.org/10.1093/brain/awx081 |
[11] | Klockgether, T., Mariotti, C. and Paulson, H.L. (2019) Spinocerebellar Ataxia. Nature Reviews Disease Primers, 5, Article No. 24. https://doi.org/10.1038/s41572-019-0074-3 |
[12] | Zhang, N. and Ashizawa, T. (2017) RNA Toxicity and Foci Formation in Microsatellite Expansion Diseases. Current Opinion in Genetics & Development, 44, 17-29. https://doi.org/10.1016/j.gde.2017.01.005 |
[13] | Daughters, R.S., Tuttle, D.L., Gao, W., et al. (2009) RNA Gain-of-Function in Spinocerebellar Ataxia Type 8. PLOS GENETICS, 5, e1000600. https://doi.org/10.1371/journal.pgen.1000600 |
[14] | Jones, L., Houlden, H. and Tabrizi, S.J. (2017) DNA Repair in the Trinucleotide Repeat Disorders. The Lancet Neurology, 16, 88-96. https://doi.org/10.1016/S1474-4422(16)30350-7 |
[15] | Chen, Z., Sequeiros, J., Tang, B., et al. (2018) Genetic Modifiers of Age-at-Onset in Polyglutamine Diseases. Ageing Research Reviews, 48, 99-108. https://doi.org/10.1016/j.arr.2018.10.004 |
[16] | Magee, J.C. and Grienberger, C. (2020) Synaptic Plasticity Forms and Functions. Annual Review of Neuroscience, 43, 95-117. https://doi.org/10.1146/annurev-neuro-090919-022842 |
[17] | Ma, Q., Geng, Y., Wang, H.L., et al. (2019) High Frequency Repetitive Transcranial Magnetic Stimulation Alleviates Cognitive Impairment and Modulates Hippocampal Synaptic Structural Plasticity in Aged Mice. Frontiers in Aging Neuroscience, 11, Article 235. https://doi.org/10.3389/fnagi.2019.00235 |
[18] | Shohayeb, B., Diab, M., Ahmed, M., et al. (2018) Factors that Influence Adult Neurogenesis as Potential Therapy. Translational Neurodegeneration, 7, Article NO. 4. https://doi.org/10.1186/s40035-018-0109-9 |
[19] | Baeken, C., De Raedt, R., Bossuyt, A., et al. (2011) The Impact of HF-rTMS Treatment on Serotonin2A Receptors in Unipolar Melancholic Depression. Brain Stimulation, 4, 104-111. https://doi.org/10.1016/j.brs.2010.09.002 |
[20] | Wang, D.J., Su, L.D., Wang, Y.N., et al. (2014) Long-Term Potentiation at Cerebellar Parallel Fiber-Purkinje Cell Synapses Requires Presynaptic and Postsynaptic Signaling Cascades. The Journal of Neuroscience, 34, 2355-2364. https://doi.org/10.1523/JNEUROSCI.4064-13.2014 |
[21] | Hirano, T. (2013) Long-Term Depression and Other Synaptic Plasticity in the Cerebellum. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 89, 183-195. https://doi.org/10.2183/pjab.89.183 |
[22] | Zhai, B., Fu, J., Xiang, S., et al. (2020) Repetitive Transcranial Magnetic Stimulation Ameliorates Recognition Memory Impairment Induced by Hindlimb Unloading in Mice Associated with BDNF/TrkB Signaling. Neuroscience Research, 153, 40-47. https://doi.org/10.1016/j.neures.2019.04.002 |
[23] | Li, C.-T., Huang, Y.-Z., Bai, Y.-M., et al. (2019) Critical Role of Glutamatergic and GABAergic Neurotransmission in the Central Mechanisms of Theta-Burst Stimulation. Human Brain Mapping, 40, 2001-2009. https://doi.org/10.1002/hbm.24485 |
[24] | Choung, J.S., Kim, J.M., Ko, M.H., et al. (2021) Therapeutic Efficacy of Repetitive Transcranial Magnetic Stimulation in an Animal Model of Alzheimer’s Disease. Scientific Reports, 11, Article No. 437. https://doi.org/10.1038/s41598-020-80147-x |
[25] | Chen, X., Dong, G.-Y. and Wang, L.-X. (2020) High-Frequency Transcranial Magnetic Stimulation Protects APP/PS1 Mice against Alzheimer’s Disease Progress by Reducing APOE and Enhancing Autophagy. Brain and Behavior, 10, e01740. https://doi.org/10.1002/brb3.1740 |
[26] | Li, K., Wang, X., Jiang, Y., et al. (2021) Early Intervention Attenuates Synaptic Plasticity Impairment and Neuroinflammation in 5xFAD Mice. Journal of Psychiatric Research, 136, 204-216. https://doi.org/10.1016/j.jpsychires.2021.02.007 |
[27] | Murase, N., Duque, J., Mazzocchio, R. and Cohen, L.G. (2004) Influence of Interhemispheric Interactions on Motor Function in Chronic Stroke. Annals of Neurology, 55, 400-409. https://doi.org/10.1002/ana.10848 |
[28] | Dafotakis, M., Grefkes, C., Eickhoff, S.B., et al. (2008) Effects of RTMS on Grip Force Control Following Subcortical Stroke. Experimental Neurology, 211, 407-412. https://doi.org/10.1016/j.expneurol.2008.02.018 |
[29] | Niimi, M., Hashimoto, K., Kakuda, W., et al. (2016) Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke. PLOS ONE, 11, e0152241. https://doi.org/10.1371/journal.pone.0152241 |
[30] | Bai, G., Jiang, L., Huan, S., et al. (2022) Study on Low-Frequency Repetitive Transcranial Magnetic Stimulation Improves Speech Function and Mechanism in Patients with Non-Fluent Aphasia after Stroke. Frontiers in Aging Neuroscience, 14, Article 883542. https://doi.org/10.3389/fnagi.2022.883542 |
[31] | Pascual-Leone, A., Valls-Sole, J., Brasil-Neto, J.P., et al. (1994) Akinesia in Parkinson’s Disease. II. Effects of Subthreshold Repetitive Transcranial Motor Cortex Stimulation. Neurology, 44, 892-898. https://doi.org/10.1212/WNL.44.5.892 |
[32] | Gaynor, L.M.F.D., Kühn, A.A., Dileone, M., et al. (2008) Suppression of Beta Oscillations in the Subthalamic Nucleus Following Cortical Stimulation in Humans. The European Journal of Neuroscience, 28, 1686-1695. https://doi.org/10.1111/j.1460-9568.2008.06363.x |
[33] | Udupa, K., Bahl, N., Ni, Z., et al. (2016) Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson’s Disease. The Journal of Neuroscience, 36, 396-404. https://doi.org/10.1523/JNEUROSCI.2499-15.2016 |
[34] | George, M.S., Lisanby, S.H., Avery, D., et al. (2010) Daily Left Prefrontal Transcranial Magnetic Stimulation Therapy for Major Depressive Disorder: A Sham-Controlled Randomized Trial. Archives of General Psychiatry, 67, 507-516. https://doi.org/10.1001/archgenpsychiatry.2010.46 |
[35] | Pal, E., Nagy, F., Aschermann, Z., et al. (2010) The Impact of Left Prefrontal Repetitive Transcranial Magnetic Stimulation on Depression in Parkinson’s Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Movement Disorders, 25, 2311-2317. https://doi.org/10.1002/mds.23270 |
[36] | Lisanby, S.H. and Belmaker, R.H. (2000) Animal Models of the Mechanisms of Action of Repetitive Transcranial Magnetic Stimulation (RTMS): Comparisons with Electroconvulsive Shock (ECS). Depression and Anxiety, 12, 178-187. https://doi.org/10.1002/1520-6394(2000)12:3<178::AID-DA10>3.0.CO;2-N |
[37] | Dennis, C.-L., Ross, L.E. and Herxheimer, A. (2008) Oestrogens and Progestins for Preventing and Treating Postpartum Depression. Cochrane Database of Systematic Reviews, No. 4, Article No. CD001690. https://doi.org/10.1002/14651858.CD001690.pub2 |
[38] | Rivas-Grajales, A.M., Barbour, T., Camprodon, J.A., et al. (2023) The Impact of Sex Hormones on Transcranial Magnetic Stimulation Measures of Cortical Excitability: A Systematic Review and Considerations for Clinical Practice. Harvard Review of Psychiatry, 31, 114-123. https://doi.org/10.1097/HRP.0000000000000366 |
[39] | Boggio, P.S., Rocha, M., Oliveira, M.O., et al. (2010) Noninvasive Brain Stimulation with High-Frequency and Low-Intensity Repetitive Transcranial Magnetic Stimulation Treatment for Posttraumatic Stress Disorder. The Journal of Clinical Psychiatry, 71, 992-999. https://doi.org/10.4088/JCP.08m04638blu |
[40] | Leong, K., Chan, P., Ong, L., et al. (2020) A Randomized Sham-Controlled Trial of 1-Hz and 10-Hz Repetitive Transcranial Magnetic Stimulation (RTMS) of the Right Dorsolateral Prefrontal Cortex in Civilian Post-Traumatic Stress Disorder: Un essai randomisé contr?lé simulé de stimulation magnétique transcranienne repetitive (SMTr) de 1 Hz et 10 Hz du cortex préfrontal dorsolatéral droit dans le trouble de stress post-traumatique chez des civils. Canadian Journal of Psychiatry, 65, 770-778. https://doi.org/10.1177/0706743720923064 |
[41] | Hausmann, M., Tegenthoff, M., S?nger, J., et al. (2006) Transcallosal Inhibition across the Menstrual Cycle: A TMS Study. Clinical Neurophysiology, 117, 26-32. https://doi.org/10.1016/j.clinph.2005.08.022 |
[42] | Wang, H.N., Bai, Y.H., Chen, Y.C., et al. (2015) Repetitive Transcranial Magnetic Stimulation Ameliorates Anxiety-Like Behavior and Impaired Sensorimotor Gating in a Rat Model of Post-Traumatic Stress Disorder. PLOS ONE, 10, e0117189. https://doi.org/10.1371/journal.pone.0117189 |
[43] | Otani, V.H.O., Shiozawa, P., Cordeiro, Q., et al. (2015) A Systematic Review and Meta-Analysis of the Use of Repetitive Transcranial Magnetic Stimulation for Auditory Hallucinations Treatment in Refractory Schizophrenic Patients. International Journal of Psychiatry in Clinical Practice, 19, 228-232. https://doi.org/10.3109/13651501.2014.980830 |
[44] | Massimini, M., Ferrarelli, F., Esser, S.K., et al. (2007) Triggering Sleep Slow Waves by Transcranial Magnetic Stimulation. Proceedings of the National Academy of Sciences of the United States of America, 104, 8496-8501. https://doi.org/10.1073/pnas.0702495104 |
[45] | Shiga, Y., Tsuda, T., Itoyama, Y., et al. (2002) Transcranial Magnetic Stimulation Alleviates Truncal Ataxia in Spinocerebellar Degeneration. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 124-126. https://doi.org/10.1136/jnnp.72.1.124 |
[46] | Ihara, Y., Takata, H., Tanabe, Y., et al. (2005) Influence of Repetitive Transcranial Magnetic Stimulation on Disease Severity and Oxidative Stress Markers in the Cerebrospinal Fluid of Patients with Spinocerebellar Degeneration. Neurological Research, 27, 310-313. https://doi.org/10.1179/016164105X39897 |
[47] | Groiss, S.J. and Ugawa, Y. (2012) Cerebellar Stimulation in Ataxia. The Cerebellum, 11, 440-442. https://doi.org/10.1007/s12311-011-0329-3 |
[48] | Chen, X.Y., Lian, Y.H., Liu, X.H., et al. (2022) Effects of Repetitive Transcranial Magnetic Stimulation on Cerebellar Metabolism in Patients with Spinocerebellar Ataxia Type 3. Frontiers in Aging Neuroscience, 14, Article 827993. https://doi.org/10.3389/fnagi.2022.827993 |
[49] | Kawamura, K., Etoh, S. and Shimodozono, M. (2018) Transcranial Magnetic Stimulation for Diplopia in a Patient with Spinocerebellar Ataxia Type 6: A Case Report. Cerebellum & Ataxias, 5, Article No. 15. https://doi.org/10.1186/s40673-018-0094-x |
[50] | Qiu, M., Chen, Y., Li, D., et al. (2022) Repetitive Transcranial Magnetic Stimulation in Spinocerebellar Ataxia Type 2: A Case Report. The Journal of ECT, 38, e26-e28. https://doi.org/10.1097/YCT.0000000000000831 |
[51] | Martin, J.-J. (2012) Spinocerebellar Ataxia Type 7. In: Vinken, P. and Bruyn, G., Eds., Handbook of Clinical Neurology, Vol. 103, Elsevier, Amsterdam, 475-491. https://doi.org/10.1016/B978-0-444-51892-7.00030-9 |
[52] | Toyoshima, Y. and Takahashi, H. (2018) Spinocerebellar Ataxia Type 17 (SCA17). In: Nóbrega, C. and Pereira de Almeida, L., Eds., Polyglutamine Disorders. Advances in Experimental Medicine and Biology, Vol. 1049, Springer, Cham, 219-231. https://doi.org/10.1007/978-3-319-71779-1_10 |