全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Cauchy Problem for Mildly Nonlinear and Non-Boussinesq Case-(ABC) System

DOI: 10.4236/jamp.2024.124079, PP. 1286-1307

Keywords: Local Well-Posedness, Ill-Posedness, Gevrey Regularity

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we investigate the local well-posedness, ill-posedness, and Gevrey regularity of the Cauchy problem for Mildly Nonlinear and Non-Boussinesq case-(ABC) system. The local well-posedness of the solution for this system in Besov spaces B p,r s 1 × B p,r s with 1p,r and s>max{ 1 1 p , 3 2 } was firstly established. Next, we consider the continuity of the solution-to-data map, i.e. the ill-posedness of the solution for this system in Besov space B p, s 1 × B p, s was derived. Finally, the Gevrey regularity of the system was presented.

References

[1]  Camassa, R., Falqui, G., Ortenzi, G., et al. (2023) Simple Two-Layer Dispersive Models in the Hamiltonian Reduction Formalism. Nonlinearity, 36, Article No. 4523.
https://doi.org/10.1088/1361-6544/ace3a0
[2]  Vu Ho, T.T. (2023) Hamiltonian Approach to 2-Layer Dispersive Stratified Fluids. Tesi di Dottorato, Università degli Studi di Milano-Bicocca, Milano.
https://hdl.handle.net/10281/414626
[3]  Christie, D.R. and White, R. (1992) The Morning Glory of the Gulf of Carpentaria. Australian Meteorological Magazine, 41, 21-60.
[4]  Stanton, T.P. and Ostrovsky, L.A. (1998) Observations of Highly Nonlinear Internal Solitons over the Continental Shelf. Geophysical Research Letters, 25, 2695-2698.
https://doi.org/10.1029/98GL01772
[5]  Long, R.R. (1956) Long Waves in a Two-Fluid System. Journal of the Atmospheric Sciences, 13, 70-74.
https://doi.org/10.1175/1520-0469(1956)013<0070:LWIATF>2.0.CO;2
[6]  Grimshaw, R., Pelinovsky, E. and Talipova, T. (1997) The Modified Korteweg-De Vries Equation in the Theory of Large-Amplitude Internal Waves. Nonlinear Processes in Geophysics, 4, 237-250.
https://doi.org/10.5194/npg-4-237-1997
[7]  Choi, W. and Camassa, R. (1999) Fully Nonlinear Internal Waves in a Two-Fluid System. Journal of Fluid Mechanics, 396, 1-36.
https://doi.org/10.1017/S0022112099005820
[8]  Miyata, M. (1988) Long Internal Waves of Large Amplitude. In: Horikawa, K. and Maruo, H., Eds., Nonlinear Water Waves, Springer, Berlin, Heidelberg, 399-406.
https://doi.org/10.1007/978-3-642-83331-1_44
[9]  Danchin, R. (2001) A Few Remarks on the Camassa-Holm Equation.
https://doi.org/10.57262/die/1356123175
[10]  Danchin, R. (2005) Fourier Analysis Methods for PDEs. Lecture Notes, 14, 1-91.
[11]  Barostichi, R.F., Himonas, A.A. and Petronilho, G. (2016) Autonomous Ovsyannikov Theorem and Applications to Nonlocal Evolution Equations and Systems. Journal of Functional Analysis, 270, 330-358.
https://doi.org/10.1016/j.jfa.2015.06.008
[12]  Luo, W. and Yin, Z. (2015) Gevrey Regularity and Analyticity for Camassa-Holm Type Systems. arXiv: 1507.05250.
[13]  Bahouri, H. (2011) Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin.
https://doi.org/10.1007/978-3-642-16830-7
[14]  Li, J. and Yin, Z. (2016) Remarks on the Well-Posedness of Camassa-Holm Type Equations in Besov Spaces. Journal of Differential Equations, 261, 6125-6143.
https://doi.org/10.1016/j.jde.2016.08.031
[15]  Danchin, R. (2003) A Note on Well-Posedness for Camassa-Holm Equation. Journal of Differential Equations, 192, 429-444.
https://doi.org/10.1016/S0022-0396(03)00096-2
[16]  Zhou, S., Mu, C. and Wang, L. (2013) Well-Posedness, Blow-Up Phenomena and Global Existence for Thegeneralized b-Equation with Higher-Order Nonlinearities and Weak Dissipation. Discrete and Continuous Dynamical Systems, 34, 843-867.
https://doi.org/10.3934/dcds.2014.34.843

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133