%0 Journal Article %T On the Cauchy Problem for Mildly Nonlinear and Non-Boussinesq Case-(ABC) System %A Luhang Zhou %J Journal of Applied Mathematics and Physics %P 1286-1307 %@ 2327-4379 %D 2024 %I Scientific Research Publishing %R 10.4236/jamp.2024.124079 %X In this paper, we investigate the local well-posedness, ill-posedness, and Gevrey regularity of the Cauchy problem for Mildly Nonlinear and Non-Boussinesq case-(ABC) system. The local well-posedness of the solution for this system in Besov spaces <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msubsup> <mi>B</mi> <mrow> <mi>p</mi><mn>,</mn><mi>r</mi></mrow> <mrow> <mi>s</mi><mo> </mo><mn>1</mn></mrow> </msubsup> <mo>&#x00D7;</mo><msubsup> <mi>B</mi> <mrow> <mi>p</mi><mn>,</mn><mi>r</mi></mrow> <mi>s</mi> </msubsup> </mrow> </math> with <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mn>1</mn><mo>&#x2264;</mo><mi>p</mi><mn>,</mn><mi>r</mi><mo>&#x2264;</mo><mi>&#x221E;</mi></mrow> </math> and <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mi>s</mi><mo>&#x003E;</mo><mi>max</mi><mrow><mo>{</mo> <mrow> <mn>1</mn><mo> </mo><mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <mo>,</mo><mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>}</mo></mrow></mrow> </math> was firstly established. Next, we consider the continuity of the solution-to-data map, <i>i.e.</i> the ill-posedness of the solution for this system in Besov space <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msubsup> <mi>B</mi> <mrow> <mi>p</mi><mn>,</mn><mi>&#x221E;</mi></mrow> <mrow> <mi>s</mi><mo> </mo><mn>1</mn></mrow> </msubsup> <mo>&#x00D7;</mo><msubsup> <mi>B</mi> <mrow> <mi>p</mi><mn>,</mn><mi>&#x221E;</mi></mrow> <mi>s</mi> </msubsup> </mrow> </math> was derived. Finally, the Gevrey regularity of the system was presented. %K Local Well-Posedness %K Ill-Posedness %K Gevrey Regularity %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=132835