全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A New Proof for Congruent Number’s Problem via Pythagorician Divisors

DOI: 10.4236/apm.2024.144016, PP. 283-302

Keywords: Prime Numbers-Diophantine Equations of Degree 2 & 4, Factorization, Greater Common Divisor, Pythagoras Equation, Pythagorician Triplets, Congruent Numbers, Inductive Demonstration Method, Infinite Descent, BSD Conjecture

Full-Text   Cite this paper   Add to My Lib

Abstract:

Considering Pythagorician divisors theory which leads to a new parameterization, for Pythagorician triplets ( a,b,c ) 3 , we give a new proof of the well-known problem of these particular squareless numbers n , called congruent numbers, characterized by the fact that there exists a right-angled triangle with rational sides: ( A α ) 2 + ( B β ) 2 = ( C γ ) 2 , such that its area Δ= 1 2 A

References

[1]  Diophanti, A. (1670) Arithmeticorum libri sex et de numeris multangulis liber vnus: Cum commentariis C. G. Bacheti. & observationibus de Fermat; accessit doctrinae analyticae inventum novum collectum ex varijs eiusdem de Fermat epistolis; Publisher excudebat Bernardus Bosc, è regione Collegij Societatis Iesu; National Library of Naples.
http://books.google.com/books?id=TbE_3aglZl4C&hl=&source=gbs_api
[2]  Genocchi, A. (1855) Sopra tre scritti inediti di Leonardo Pisano, pubblicati da B. Boncompagni„ Annali di Scienze Matematiche e Fisiche, t. 5 e 6, 161-185.
[3]  Dickson, L. E. (1952) History of Number Theory, Vol. 2. Chealsea Publishing Company (Reprinted), New York.
[4]  Cuculière, R. (1988) Mille ans de chasse aux nombres congruent. Séminaire de Philosophie et Mathématiques, 2, 1-17.
http://www.numdam.org/item?id=SPHM_1988___2_A1_0
[5]  Ramacciotti, F. R. (2003) Angelo Genocchi e il suo contributo alla Teoria dei numeri, Sintesi della tesi di Laurea in Matematica, Relatore Prof. Universit a degli studi di Roma Tre, Roma.
[6]  Fresnel, J. (2006) Géométrie et arithmétique. APMEP, No. 466, pp. 699-713.
https://www.apmep.fr/IMG/pdf/AAA06073.pdf
[7]  Coates J., (2005) The Congruent Number Problem. Enrichment Programme for Young Mathematics Talents, Dept of Math & IMS CUHK Guest Lecture Series Autumn Class 2002/03, Chinese University of Hong Kong, Shatin.
[8]  Tunnel, J.B. (1983) A Classical Diophantine Problem and Modular form of Weight 3/2. Inventiones Mathematicae, 72, 323-334.
https://doi.org/10.1007/BF01389327
[9]  Birch, B.J. and Swinnerton-Dyer, H.P.F. (1963) Notes on Elliptic Curves. I. Journal für die reine und angewandte Mathematik, 1963, 7-25.
https://doi.org/10.1515/crll.1963.212.7
[10]  Birch, B.J. and Swinnerton-Dyer, H.P.F. (1965) Notes on Elliptic Curves. II. Journal für die reine und angewandte Mathematik, 1965, 79-108.
https://doi.org/10.1515/crll.1965.218.79
[11]  Dujella, A. (2021) Number Theory. Texbook of the University of Zagreb, Školska knjiga, Masarykova.
[12]  Lagrange, J. (1975) Nombres congruents et courbes elliptiques. Séminaire Delange-Pisot-Poitou, 16, 1-17.
[13]  Keuméan, L.D. (2020) Diviseurs pythagoriciens appliqués à la résolution du problème de certains nombres congruents. Mémoire de Master 2, Université Félix Houphouet Boigny, Abidjan.
[14]  Tanoé, F.E. and Kimou, P.K. (2023) Pythagorician Divisors and Applications to Some Diophantine Equations. Advances in Pure Mathematics, 13, 35-70.
https://doi.org/10.4236/apm.2023.132003
[15]  Hemenway, B.R. (2006) On Recognizing Congruent Prime. Master Thesis, Simon Fraiser University, Burnaby.
http://summit.sfu.ca/item/6418
[16]  Coates, J. and Wiles A. (1977) On the Conjecture of Birch and Swinnerton-Dyer. Inventiones Mathematicae, 39, 223-251.
https://doi.org/10.1007/BF01402975
[17]  Evink, T., Top, J. and Top, J.D. (2021) A Remarque on Prime (non)Congruent Numbers. Quaestiones Mathematicae, 45, 1841-1853.
https://www.tandfonline.com/loi/tqma20
https://doi.org/10.2989/16073606.2021.1977410
[18]  Lucas, E. (1877) Recherches sur plusieurs ouvrages de Léonard de Pise et sur diverses questions d’Arithmétiques supérieures. Extrait du Bullettino di bibliografia di storia delle scienze mathematiche e fisiche, 10, 124.
https://upload.wikimedia.org/wikipedia/commons/5/51/Recherches_Sur_Plusieurs_Ouvrages_De_Léonard_De_Pise_Et_Sur_Diverses_Questions_D’Arithmétique_Supérieure,_édouard_Lucas_(1877).pdf
[19]  Euler, L. (1738) Theorematum quorundam arithmeticorum demonstrations. Novi Commentarii academiae scientiarum Petropolitanae, 10, 125-146.
[20]  Rimbeboim, P. (1999) Fermat’s Last Theorem for Amateurs. Springer-Verlag New York Inc., New York.
[21]  Mouanda, J. (2022) On Fermat’s Last Theorem and Galaxies of Sequences of Positive Integers. American Journal of Computational Mathematics, 12, 162-189.
https://doi.org/10.4236/ajcm.2022.121009
[22]  Bhanota, S.A. and Kaabar, M.K.A. (2022) On Multiple Primitive Pythagorean Triplets. Palestine Journal of Mathematics, 11, 119-129.
[23]  Monsky, P. (1990) Mock Heegner Points and Congruent Numbers. Mathematische Zeitschrift, 204, 45-67.
https://doi.org/10.1007/BF02570859
[24]  Stephens, N.M. (1975) Congruence Properties of Congruent Numbers, Bulletin of the London Mathematical Society, 7, 182-184.
https://doi.org/10.1112/blms/7.2.182

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133