%0 Journal Article %T A New Proof for Congruent Number&#8217;s Problem via Pythagorician Divisors %A Lé %A opold Dè %A kpassi Keumé %A an %A Franç %A ois Emmanuel Tanoé %J Advances in Pure Mathematics %P 283-302 %@ 2160-0384 %D 2024 %I Scientific Research Publishing %R 10.4236/apm.2024.144016 %X Considering Pythagorician divisors theory which leads to a new parameterization, for Pythagorician triplets <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mrow><mo>(</mo> <mrow> <mi>a</mi><mn>,</mn><mi>b</mi><mn>,</mn><mi>c</mi></mrow> <mo>)</mo></mrow><mo>&#x2208;</mo><msup> <mi>&#x2115;</mi> <mrow> <mn>3</mn><mo>&#x2217;</mo></mrow> </msup> </mrow> </math> , we give a new proof of the well-known problem of these particular squareless numbers <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mi>n</mi><mo>&#x2208;</mo><msup> <mi>&#x2115;</mi> <mo>&#x2217;</mo> </msup> </mrow> </math> , called congruent numbers, characterized by the fact that there exists a right-angled triangle with rational sides: <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msup> <mrow> <mrow><mo>(</mo> <mrow> <mfrac> <mi>A</mi> <mi>&#x03B1;</mi> </mfrac> </mrow> <mo>)</mo></mrow></mrow> <mn>2</mn> </msup> <mo>+</mo><msup> <mrow> <mrow><mo>(</mo> <mrow> <mfrac> <mi>B</mi> <mi>&#x03B2;</mi> </mfrac> </mrow> <mo>)</mo></mrow></mrow> <mn>2</mn> </msup> <mo>=</mo><msup> <mrow> <mrow><mo>(</mo> <mrow> <mfrac> <mi>C</mi> <mi>&#x03B3;</mi> </mfrac> </mrow> <mo>)</mo></mrow></mrow> <mn>2</mn> </msup> </mrow> </math> , such that its area <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mi>&#x0394;</mi><mo>=</mo><mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mfrac> <mi>A</mi> %K Prime Numbers-Diophantine Equations of Degree 2 & %K 4 %K Factorization %K Greater Common Divisor %K Pythagoras Equation %K Pythagorician Triplets %K Congruent Numbers %K Inductive Demonstration Method %K Infinite Descent %K BSD Conjecture %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=132812