全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Steroids, Tri- and Meroterpenoids with a Quinone Structure—A Review

DOI: 10.4236/ijoc.2024.141003, PP. 32-68

Keywords: Steroid, Secosteroid, Meroterpenoid, Triterpenoid, Quinone, Anti-Tumour Agent, Antibiotic, Natural Product

Full-Text   Cite this paper   Add to My Lib

Abstract:

Terpenoids with quinoid structures are found as natural products. This includes steroidal quinones, quinones with a secosteroid structure and meroterpenoid quinones. Importantly, catechol estrogens as endogenous metabolites of estradiol and estrone are precursors of reactive quinones and semiquinones, which are thought to contribute to estrogen-induced carcinogenesis. On the other hand, a number of quinones that include substituted naphthoquinones and anthraquinones are highly cytotoxic and have been used in cancer treatment. This makes the structures interesting synthetic targets. The following is a review of important natural and synthetic terpenoid and steroid quinone hybrids.

References

[1]  Kumagai, Y. and Abiko, Y. (2017) Environmental Electrophiles: Protein Adducts, Modulation of Redox Signaling, and Interaction with Persulfides/Polysulfides. Chemical Research in Toxicology, 30, 203-219.
https://doi.org/10.1021/acs.chemrestox.6b00326
[2]  Bolton, J.L., Trush, M.A., Penning, T.M., Dryhurst, G. and Monks, T.J. (2000) Role of Quinones in Toxicology. Chemical Research in Toxicology, 13, 135-160.
https://doi.org/10.1021/tx9902082
[3]  Abou-Zeid, A.Z.A. and Yousef, A.A. (1976) Purification of Mitomycins Produced by Streptomyces caespitosus. Journal of Applied Chemistry and Biotechnology, 26, 454-458.
https://doi.org/10.1002/jctb.5020260166
[4]  Mao, Y., Varoglu, M. and Sherman, D.H. (1999) Molecular Characterization and Analysis of the Biosynthetic Gene Cluster for the Antitumor Antibiotic Mitomycin C from Streptomyces lavendulae NRRL 2564. Chemistry & Biology, 6, 251-263.
https://doi.org/10.1016/S1074-5521(99)80040-4
[5]  Guella, G., Mancini, I., Guerriero, A. and Pietra, F. (1985) New Furano Sesquiterpenoids from Mediterranean Sponges. Helvetica Chimica Acta, 68, 1276-1282.
https://doi.org/10.1002/hlca.19850680523
[6]  Shen, Y.C., Lu, C.H., Chakraborty, R. and Kuo, Y.H. (2003) Isolation of Sesquiterpenoids from Sponge Dysidea avara and Chemical Modification of Avarol as Potential Antitumor Agents. Natural Products Research, 17, 83-89.
https://doi.org/10.1080/1478641031000103650
[7]  Crooke, S.T. and Bradner, W.T. (1976) Mitomycin C: A Review. Cancer Treatment Reviews, 3, 121-139.
https://doi.org/10.1016/S0305-7372(76)80019-9
[8]  Bradner, W.T. (2001) Mitomycin C: A Clinical Update. Cancer Treatment Reviews, 27, 35-50.
https://doi.org/10.1053/ctrv.2000.0202
[9]  Paz, M.M., Zhang, X., Lu, J. and Holmgren, A. (2012) A New Mechanism of Action for the Anticancer Drug Mitomycin C: Mechanism-Based Inhibition of Thioredoxin Reductase. Chemical Research in Toxicology 25, 1502-1511.
https://doi.org/10.1021/tx3002065
[10]  Müller, W.E., Maidhof, A., Zahn, R.K., Schröder, H.C., Gasić, M.J., Heidemann, D., Bernd, A., Kurelec, B., Eich, E. and Seibert, G. (1985) Potent Antileukemic Activity of the Novel Cytostatic Agent Avarone and Its Analogues in Vitro and in Vivo. Cancer Research, 45, 4822-4826.
[11]  Jamison, J.M., Gilloteaux, J., Taper, H.S. and Summers, J.L. (2001) Evaluation of the in Vitro and in Vivo Antitumour Activities of Vitamin C and K-3 Combinations against Human Prostate Cancer. The Journal of Nutrition, 131, 158S-160S.
https://doi.org/10.1093/jn/131.1.158S
[12]  O’Brien, P.J. (1991) Molecular Mechanism of Quinone Cytotoxicity. Chemico-Biological Interactions, 80, 1-41.
https://doi.org/10.1016/0009-2797(91)90029-7
[13]  Driscoll, J.S., Hazard, G.F., Wood, G.F. and Goldin, A. (1974) Structure-Antitumour Activity Relations among Quinone Derivatives. Cancer Chemotherapy, Rep. 4 (Part 2), 1-27.
[14]  Gunatilaka, A.L.L. (1996) Triterpenoid Quinonemethides and Related Compounds (Celastroloids). In: Herz, G. W. Kirby, R. E. Moore, W. Steglich, Ch. Tamm, Eds., Progress in the Chemistry of Organic Natural Products, Vol. 67, Springer, Berlin, 1-123.
https://doi.org/10.1007/978-3-7091-9406-5_1
[15]  Lu, Y., Liu, Y., Zhou, J. and Gao, W. (2021) Biosynthesis, Total Synthesis, Structural Modifications, Bioactivity, and Mechanism of Action of the Quinone-Methide Triterpenoid Celastrol. Medicinal Research Reviews, 41, 1022-1060.
https://doi.org/10.1002/med.21751
[16]  Gordaliza, M. (2010) Cytotoxic Terpene Quinones from Marine Sponges. Marine Drugs, 8, 2849-2870.
https://doi.org/10.3390/md8122849
[17]  Yang, I., Choi, H., Nam, S.-J. and Kang, H. (2015) A New 9,11-Secosterol with a 1,4-Quinone from a Korean Marine Sponge Ircinia Sp. Archives of Pharmaceutical Research, 38, 1970-1974.
https://doi.org/10.1007/s12272-015-0620-9
[18]  Yang, I., Choi, H., Won, D.H., Nam, S.-J. and Kang, H. (2014) An Antibacterial 9,11-Secosterol from a Marine Sponge Ircinia Sp. Bulletin of the Korean Chemical Society, 35, 3360-3362.
https://doi.org/10.5012/bkcs.2014.35.11.3360
[19]  Kita, M., Kawamura, A. and Kigoshi, H. (2016) Aplysiasecosterols B and C: Two New 9,11-Secosteroids with a Cis-Fused 1,4-Quinone Structure from the Sea Hare Aplysia kurodai. Tetrahedron Letters, 57, 858-860.
https://doi.org/10.1016/j.tetlet.2016.01.028
[20]  Kawamura, A., Kita, M. and Kigoshi, H. (2015) Aplysiasecosterol A: A 9,11-Se-costeroid with an Unprecedented Tricyclic γ-Diketone Structure from the Sea Hare Aplysia kurodai. Angewandte Chemie International Edition, 54, 7073-7076.
https://doi.org/10.1002/anie.201501749
[21]  Lu, Z., Zhang, X., Guo, Z., Chen, Y., Mu, T. and Li, A. (2018) Total Synthesis of Aplysiasecosterol A. Journal of the American Chemical Society, 140, 9211-9218.
https://doi.org/10.1021/jacs.8b05070
[22]  Ohyoshi, T., Iizumi, H., Hosono, S., Tano, H. and Kigoshi, H. (2023) Total Synthesis of Aplysiasecosterols A and B, Two Marine 9,11-Secosteroids. Organic Letters, 25, 4725-4729.
https://doi.org/10.1021/acs.orglett.3c01692
[23]  Ohyoshi, T., Tano, H. and Kigoshi, H. (2021) Synthetic Studies toward Aplysiasecosterol A: Concise Synthesis of the Tricyclic Core and Its Reactions for Introduction of the D Ring Fragment. Bulletin of the Chemical Society of Japan, 94, 1179-1184.
https://doi.org/10.1246/bcsj.20200401
[24]  Pereira, R.B., Andrade, P.B. and Valentão, P. (2016) Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus. Marine Drugs, 14, Article No. 39.
https://doi.org/10.3390/md14020039
[25]  Eder, U. Sauer, G. and Wiechert, R. (1971) New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures. Angewandte Chemie International Edition, 10, 496-497.
https://doi.org/10.1002/anie.197104961
[26]  Thiemann, T., Noltemeyer, M. and De Meijere, A. (1997) Chiral Building Blocks from ( )-(S)-7,7a-Dihydro-7a-Methylindane-1,5(6H)-Dione (Hajos-Parrish Diketone). Reports of the Institute of Advanced Material Study, Kyushu University, 11, 147-152.
https://catalog.lib.kyushu-u.ac.jp/opac_download_md/7880/KJ00004507847.pdf
[27]  Tu, Y., Wang, Z.-X. and Shi, Y. (1996) An Efficient Asymmetric Epoxidation Method for Trans-Olefins Mediated by a Fructose-Derived Ketone. Journal of the American Society, 118, 9806-9807.
https://doi.org/10.1021/ja962345g
[28]  Ito, Y., Hirao, T. and Saegusa, T. (1978) Synthesis of α,β-Unsaturated Carbonyl Compounds by Palladium(II)-Catalyzed Dehydrosilylation of Silyl Enol Ethers. Journal of Organic Chemistry, 43, 1011-1013.
https://doi.org/10.1021/jo00399a052
[29]  Rajagopal, D., Narayanan, R. and Swaminathan, S. (2001) Enantioselective Solvent-Free Robinson Annulation Reactions. Proceedings of the Indian Academics of Science, 113, 197-213.
https://www.ias.ac.in/article/fulltext/jcsc/113/03/0197-0213
https://doi.org/10.1007/BF02704070
[30]  Davis, F.A., Vishwakarma, L.C., Billmers, J.G. and Finn, J. (1984) Synthesis of α-Hydroxy Carbonyl Compounds (Acyloins): Direct Oxidation of Enolates Using 2-Sulfonyloxaziridines. Journal of Organic Chemistry, 49, 3241-3243.
https://doi.org/10.1021/jo00191a048
[31]  Crabtree, R.H. and Davis, M.W. (1986) Directing Effects in Homogenous Hydrogenation with [Ir(Cod)(PCy3)(Py)]PF6. Journal of Organic Chemistry, 51, 2655-2661.
https://doi.org/10.1021/jo00364a007
[32]  Chang, Y.-C., Hwang, T.-L., Kuo, L.-M. and Sung, P.-J. (2017) Pinnisterols D-J, New 11-Acetoxy-9,11-Secosterols with a 1,4-Quinone Moiety from Formosan Gorgonian Coral Pinnigorgia Sp. (Gorgoniidae). Marine Drugs, 15, 11-22.
https://doi.org/10.3390/md15010011
[33]  Miao, Y., Li, X., Zhang, M., Fan, H. and Gui, J. (2022) Synthesis of 9,11-Secosteroids Pinnisterol E, Glaciasterol B, and 6‑Keto-Aplidiasterol B. Organic Letters, 24, 1684-1688.
https://doi.org/10.1021/acs.orglett.2c00281
[34]  Delseth, C., Kashman, Y. and Djerassi, C. (1979) Ergosta-5,7,9(11),22-Tetraen-3β-Ol and Its 24ξ-Ethyl Homolog, Two New Marine Sterols from the Red Sea Sponge Biemna Fortis. Helvetica Chimica Acta, 62, 2037-2045.
https://doi.org/10.1002/hlca.19790620633
[35]  Li, J., Chen, C., Fang, T., Wu, L., Liu, W., Tang, J. and Long, Y. (2022) New Steroid and Isocoumarin from the Mangrove Endophytic Fungus Talaromyces Sp. SCNU-F0041. Molecules, 27, Article No. 5766.
https://doi.org/10.3390/molecules27185766
[36]  Ortega, H.E., Graupner, P.R., Asai, Y., Ten Dyke, K., Qiu, D., Shen, Y.Y., Rios, N., Arnold, A.E., Coley, P.D., Kursar, T.A., Gerwick, W.H. and Cubilla-Rios, L. (2013) Mycoleptodiscins A and B, Cytotoxic Alkaloids from the Endophytic Fungus Mycoleptodiscus Sp. F0194. Journal of Natural Products, 76, 741-744.
https://doi.org/10.1021/np300792t
[37]  Nagaraju, K., Chegondi, R. and Chandrasekhar, S. (2016) Expanding Diversity without Protecting Groups: ( )-Sclareolide to Indolosesquiterpene Alkaloid Mycoleptodiscin A and Analogues. Organic Letters, 18, 2684-2687.
https://doi.org/10.1021/acs.orglett.6b01145
[38]  Zhou, S., Chen, H., Luo, Y., Zhang, W. and Li, A. (2015) Asymmetric Total Synthesis of Mycoleptodiscin A. Angewandte Chemie International Edition, 54, 6878-6882.
https://doi.org/10.1002/anie.201501021
[39]  Dethe, D.H., Sau, S.K. and Mahapatra, S. (2016) Biomimetic Enantioselective Total Synthesis of (-)-Mycoleptodiscin A. Organic Letters, 18, 6392-6395.
https://doi.org/10.1021/acs.orglett.6b03292
[40]  Fürstner, A. and Jumbam, D.N. (1992) Titanium-Induced Syntheses of Furans, Benzofurans and Indoles. Tetrahedron, 48, 5991-6010.
https://doi.org/10.1016/S0040-4020(01)89848-3
[41]  Taguchi, H., Tanaka, S., Yamamoto, H. and Nozaki, H. (1973) A New Synthesis of α,β-Unsaturated Aldehydes Including (E)2-Methyl-2-Alkenal. Tetrahedron, 14, 2465-2468.
https://doi.org/10.1016/S0040-4039(01)96179-9
[42]  Itoh, S., Takada, N., Ando, T., Haranou, S., Huang, X., Uenoyama, Y., Ohshiro, Y., Komatsu, M. and Fukuzumui, S. (1997) Synthesis, Physicochemical Properties, and Amine-Oxidation Reaction of Indolequinone Derivatives as Model Compounds of Novel Organic Cofactor TTQ of Amine Dehydrogenases. Journal of Organic Chemistry, 62, 5898-5907.
https://doi.org/10.1021/jo970716l
[43]  Yildizhan, S., Van Loon, J., Sramkova, A., Ayasse, M., Aresene, C., Ten Broeke, C. and Schulz, S. (2009) Aphrodisiac Pheromones from the Wings of the Small Cabbage White and Large Cabbage White Butterflies, Pieris rapae and Pieris brassicae. ChemBioChem, 10, 1666-1677.
https://doi.org/10.1002/cbic.200900183
[44]  Tsuchiya, Y., Nakajima, M. and Yokoi, T. (2005) Cytochrome P450-Mediated Metabolism of Estrogens and Its Regulation in Human. Cancer Letters, 227, 115-124.
https://doi.org/10.1016/j.canlet.2004.10.007
[45]  Kalyanaraman, B., Felix, C.C. and Sealy, R.C. (1985) Semiquinone Radicals of Catecholamines, Catecholestrogens, and Their Metal Ion Complex. Environmental Health Perspectives, 64, 185-198.
https://doi.org/10.1289/ehp.8564185
[46]  Degen, G.H. (1990) Role of Prostaglandin-H Synthase in Mediating Genotoxic and Carcinogenic Effects of Estrogens. Environmental Health Perspectives, 88, 217-233.
https://doi.org/10.1289/ehp.9088217
[47]  Capdevila, J., Sack, Y. and Falck, J.R. (1984) The Mechanistic Plurality of Cytochrome P-450 and Its Biological Ramifications. Xenobiotica, 14, 105-118.
https://doi.org/10.3109/00498258409151401
[48]  Fussell, K.C., Udasin, R.G., Smith, P.J.S., Gallo, M.A. and Laskin, J.D. (2011) Catechol Metabolites of Endogenous Estrogens Induce Redox Cycling and Generate Reactive Oxygen Species in Breast Epithelial Cells. Carcinogenesis, 32, 1285-1293.
https://doi.org/10.1093/carcin/bgr109
[49]  Abul-Hajj, Y.J. (1984) Synthesis of 3,4-Estrogen-O-Quinone. Journal of Steroid Biochemistry, 21, 621-622.
https://doi.org/10.1016/0022-4731(84)90340-6
[50]  Jouanin, I., Debrauwer, L., Fauglas, G., Paris, A. and Rathahao, E. (2002) Adduction of Catechol Estrogens to Nucleosides. Steroids, 67, 1091-1099.
https://doi.org/10.1016/S0039-128X(02)00070-3
[51]  Khasnis, D. and Abul-Hajj, Y.J. (1994) Estrogen Quinones: Reaction with Propylamine. Chemical Research in Toxicology, 7, 68-72.
https://doi.org/10.1021/tx00037a010
[52]  Cao, K., Stack, D.E., Ramanathan, R., Gross, M.L., Rogan, E.G. and Cavalieri, E.L. (1998) Synthesis and Structure Elucidation of Estrogen Quinones Conjugated with Cysteine, N-Acetylcysteine, and Glutathione. Chemical Research in Toxicology, 11, 909-916.
https://doi.org/10.1021/tx9702291
[53]  Stack, D.E., Byun, J., Gross, M.L., Rogan, E.G. and Cavalieri, E.L. (1996) Molecular Characteristics of Catechol Estrogen Quinones in Reactions with Deoxyribonucleosides. Chemical Research in Toxicology, 9, 851-859.
https://doi.org/10.1021/tx960002q
[54]  Kato, Y. and Suga, N. (2018) Covalent Adduction of Endogenous and Food-Derived Quinones to a Protein: Its Biological Significance. Journal of Clinical Biochemistry and Nutrition, 62, 213-220.
https://doi.org/10.3164/jcbn.18-26
[55]  Nicolis, S., Monzani, E., Pezzella, A., Ascenzi, P., Sbardella, D. and Casella, L. (2013) Neuroglobin Modification by Reactive Quinone Species. Chemical Research in Toxicology, 26, 1821-1831.
https://doi.org/10.1021/tx4001896
[56]  Fang, C.M., Ku, M.C., Chang, C.K., Liang, H.C., Wang, T.F., Wu, C.H. and Chen, S.H. (2015) Identification of Endogenous Sites Pecific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicological Sciences, 148, 433-442.
https://doi.org/10.1093/toxsci/kfv190
[57]  Lin, C., Chen, D.-R., Hsieh, W.-C., Yu, W.-F., Lin, C.-C., Ko, M.-H., Juan, C.-H., Tsuang, B.-J. and Lin, P.-H. (2013) Investigation of the Cumulative Body Burden of Estrogen-3,4-Quinone in Breast Cancer Patients and Controls Using Albumin Adducts as Biomarkers. Toxicology Letters, 218, 194-199.
https://doi.org/10.1016/j.toxlet.2013.02.004
[58]  Lin, C., Chen, D.R., Kuo, S.J., Feng, C.Y., Chen, D.R., Hsieh, W.C. and Lin, P.H. (2022) Profiling of Protein Adducts of Estrogen Quinones in 5-Year Survivors of Breast Cancer without Recurrence. Cancer Control, 29.
https://doi.org/10.1177/10732748221084196
[59]  Gold, A.M. and Schwenk, E. (1958) Synthesis and Reactions of Steroidal Quinols. Journal of the American Chemical Society, 80, 5683-5687.
https://doi.org/10.1021/ja01554a026
[60]  Yamada, Y., Hosaka, K., Sawahata, T., Watanabe, Y. and Iguchi, K. (1977) Reaction of Estrone with Thallium(III) Perchlorate. Remote Oxidation at C-11 Position. Tetrahedron Letters, 31, 2675-2676.
https://doi.org/10.1016/S0040-4039(01)83043-4
[61]  Šolaja, B.A., Milić,, D.R. and Gašić, M.J. (1996) A Novel M-CPBA Oxidation: P-Quinols and Epoxyquinols from Phenols. Tetrahedron Letters, 37, 3765-3768.
https://doi.org/10.1016/0040-4039(96)00677-6
[62]  Milić, D.R., Šolaja, B.A., Došen-Mićović, L., Ribár, B., Kapor, A., Sladić, D. and Gašić, M.J. (1997) Structure and Reactivity of Steroidal Quinones. Journal of the Serbian Chemical Society, 62, 755-768.
[63]  Milić, D.R., Gašić, M.J., Muster, W., Csanádi, J.J. and Šolaja, B.A. (1997) The Synthesis and Biological Evaluation of A-Ring Substituted Steroidal P-Quinones. Tetrahedron, 53, 14073-14084.
https://doi.org/10.1016/S0040-4020(97)00910-1
[64]  Kapor, A., Ribar, B., Strűmpel, M., Gašić, M.J., Milić, D.R. and Šolaja, B. (2000) Structure and Conformation of 2β,3β-Epoxyestr-5(10-En-1,4,17-Trione) Spectroscopic and X-Ray Crystallographic Studies. Journal of Molecular Structure, 522, 289-301.
https://doi.org/10.1016/S0022-2860(99)00363-4
[65]  Li, J.J. (2021). Dienone-Phenol Rearrangement. In: Li, J.J., Ed., Name Reactions, Springer, Cham, 176-178.
https://doi.org/10.1007/978-3-030-50865-4_46
[66]  Biellmann, J.F. and Branlant, G. (1973) Synthesis and Circular Dichroism of Substituted Benzoquinones. Bulletin de la Societe Chimique de France, 6, 2086-2090.
[67]  Milić, D.R., Kop, T., Juranić, Z., Gašić, M.J., Tinant, B., Pocsfalvi, G. and Šolaja, B.A. (2005) Synthesis and Antiproliferative Activity of A-Ring Aromatised and Conduritol-Like Steroidal Compounds. Steroids, 70, 922-932.
https://doi.org/10.1016/j.steroids.2005.07.001
[68]  Chenera, B., Venkitachalam, U., Ward, D. and Reusch, W. (1986) Total Synthesis of Tetracyclic Triterpenes. 2. An Efficient Synthesis of 1,4-Dimethoxy-14α-Methyl-11-Oxoestra-1,3,5(10)-Triene. Tetrahedron, 42, 3443-3452.
https://doi.org/10.1016/S0040-4020(01)87311-7
[69]  Kaliappan, K.P. and Ravikumar, V. (2005) Design and Synthesis of Novel Sugar-Oxasteroid-Quinone Hybrids. Organic Biomolecular Chemistry, 3, 848-851.
https://doi.org/10.1039/b418659a
[70]  De Riccardis, F., Izzo, I., Di Filippo, M., Sodano, G., D’Acquisto, F. and Carnuccio, R. (1997) Synthesis and Cytotoxic Activity of Steroid-Anthraquinone Hybrids. Tetrahedron, 53, 10871-10882.
https://doi.org/10.1016/S0040-4020(97)00693-5
[71]  Sayyad, A.A. and Kaliappan, K.K. (2017) Sequential Enyne-Metathesis/Diels-Alder Strategy: Rapid Access to Sugar-Oxasteroid-Quinone Hybrids. European Journal of Organic Chemistry, 2017, 5055-5065.
https://doi.org/10.1002/ejoc.201700599
[72]  De Riccardis, F., Izzo, I., Tedesco, C. and Sodano, G. (1997) Synthesis of Unusual Cholestane Analogs by Diels-Alder Reaction (A CD → ABCD). Tetrahedron Letters, 38, 2155-2158.
https://doi.org/10.1016/S0040-4039(97)00270-0
[73]  Akhrem, A.A. and Titov, A.Y. (1969) Total Synthesis of Steroid. Israel Program for Scientific Translations, Jerusalem.
[74]  De Riccardis, F., Meo, D., Izzo, I., Di Filippo, M. and Casapullo, A. (1998) Design and Synthesis of Estrarubicin. A Novel Class of Estrogen-Anthracenedione Hybrids. European Journal of Organic Chemistry, 1998, 1965-1970.
https://doi.org/10.1002/(SICI)1099-0690(199809)1998:9<1965::AID-EJOC1965>3.0.CO;2-S
[75]  Grieco, P.D., Nunes, J.J. and Gaul, M.D. (1990) Dramatic Rate Accelerations of Diels-Alder Reactions. Journal of the American Chemical Society, 112, 4595-4596.
https://doi.org/10.1021/ja00167a096
[76]  Ribeiro Morais, G. (2006) Novel Steroidal Derivatives Linked to Biologically Active Moieties. PhD Thesis, Faculty of Pharmacy, University of Lisbon, Lisbon.
[77]  Ribeiro Morais, G., Watanabe, M., Mataka, S., Ideta, K. and Thiemann, T. (2005) Areno Annelated Estranes by Intermolecular Cycloaddition. Proceedings of the 9th International Electronic Conference in Synthetic Organic Chemistry, 1-30 November 2005; Sciforum Electronic Conference Series, Vol. 9, A035.
[78]  Mancini, I., Vigna, J., Sighel and Defant, A. (2022) Hybrid Molecules Containing Naphthoquinone and Quinolinedione Scaffolds as Antineoplastic Agents. Molecules, 27, Article No. 4948.
https://doi.org/10.3390/molecules27154948
[79]  Li, G., Li, Q., Sun, H. and Li, W. (2021) Novel Diosgenin-1,4-Quinone Hybrids: Synthesis, Antitumor Evaluation, and Mechanism Studies. Journal of Steroid Biochemistry and Molecular Biology, 214, Article ID: 105993.
https://doi.org/10.1016/j.jsbmb.2021.105993
[80]  Al Jasem, Y., Khan, M., Taha, A. and Thiemann, T. (2014) Preparation of Steroidal Hormones with an Emphasis on Transformations of Phytosterols and Cholesterol—A Review Mediterranean Journal of Chemistry, 3, 796-830.
https://doi.org/10.13171/mjc.3.2.2014.18.04.15
[81]  Kadela-Tomanek, M., Bebenek, E., Chrobak, E., Marciniec, K., Latocha, M., Kuśmierz, D., Jastrzebska, M. and Boryczka, S. (2019) Betulin-1,4-Quinone Hybrids: Synthesis, Anticancer Activity and Molecular Docking Study with NQO1 Enzyme. European Journal of Medicinal Chemistry, 177, 302-315.
https://doi.org/10.1016/j.ejmech.2019.05.063
[82]  Kadela-Tomanek, M., Jastrzebska, Chrobak, E., Bebenek, E. and Boryczka, S. (2021) Chromatographic and Computational Screening of Lipophilicity and Pharmacokinetics of Newly Synthesized Betulin-1,4-Quinone Hybrids. Processes, 9, Article No. 376.
https://doi.org/10.3390/pr9020376
[83]  Kadela-Tomanek, M., Marciniec, K., Jastrzebska, M., Chrobak, E., Bebenek, E., Latocha, M., Kuśmierz, D. and Boryczka, S. (2021) Design, Synthesis and Biological Activity of 1,4-Quinone Moiety Attached to Betulin Derivatives as Potent DT-Diaphorase Substrate. Bioorganic Chemistry, 106, Article ID: 104478.
https://doi.org/10.1016/j.bioorg.2020.104478
[84]  Al Soom, N. (2016) Preparation of Novel Steroidal Conjugates as Potential Diagnostic and Therapeutic Agents with an Emphasis on Quinoid and Halogenated Moieties. MSc Thesis, United Arab Emirates University, Al Ain, United Arab Emirates.
[85]  Al Azzani, M., Al Soom, N., Iniesta, J. and Thiemann, T. (2015) Facile Access to Amidoethyl-P-Benzoquinones. Proceedings of the 19th International Electronic Conference on Synthetic Organic Chemistry, Basel, 1-30 November 2015, 3060.
https://sciforum.net/manuscripts/3060/manuscript.pdf
[86]  Fujiwara, Y., Domingo, V., Seiple, I.B., Giantassio, R., Del Bel, M. and Baran, P.S. (2011) Practical C-H Functionalization of Quinones with Boronic Acids. Journal of the American Chemical Society, 133, 3292-3295.
https://doi.org/10.1021/ja111152z
[87]  Ahmed, V., Liu, Y., Silvestro, C. and Taylor, S.D. (2006) Boronic Acids as Inhibitors of Steroid Sulfatase. Bioorganic & Medicinal Chemistry, 14, 8564-8573.
https://doi.org/10.1016/j.bmc.2006.08.033
[88]  Dao, K.-L., Sawant, R.P., Hendricks, J.A., Ronga, V., Torchilin, V.P. and Hanson, R.N. (2012) Design, Synthesis and Initial Biological Evaluation of a Steroidal Anti-Estrogen-Doxorubicin Bioconjugate for Targeting Estrogen-Receptor Positive Breast Cancer Cells. Bioconjugate Chemistry, 23, 785-795.
https://doi.org/10.1021/bc200645n
[89]  Kuduk, S.D., Zheng, F.F., Sepp-Lorenzino, L., Rosen, N. and Danishefsky, S.J. (1999) Synthesis and Evaluation of Geldanamycin-Estradiol Hybrids. Bioorganic & Medicinal Chemistry Letters, 9, 1233-1238.
https://doi.org/10.1016/S0960-894X(99)00185-7
[90]  Tietze, L.F., Bell, H.P. and Chandrasekhar, S. (2003) Natural Product Hybrids as New Leads for Drug Discovery. Angewandte Chemie International Edition, 42, 3996-4028.
https://doi.org/10.1002/anie.200200553

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133