全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关于肿瘤表面转铁蛋白受体的药物递送进展
Progress in Drug Delivery via Transferrin Receptors on the Surface of Tumors

DOI: 10.12677/pi.2024.132012, PP. 92-100

Keywords: 转铁蛋白受体,肿瘤,靶向治疗,药物递送
Transferrin Receptor
, Tumor, Targeted Therapy, Drug Delivery

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着对转铁蛋白受体研究的深入,基于转铁蛋白受体的药物靶向策略得到了显著发展。由于转铁蛋白受体在多种细胞,包括肿瘤细胞中的高表达,因此被开发为抗肿瘤药物的潜在靶点。靶向肿瘤表面转铁蛋白受体进行肿瘤治疗的药物有多种开发方式,本文介绍了转铁蛋白受体配体的开发,以及以这些配体为基础进行肿瘤药物开发,这些药物在各种治疗中显示出显著的疗效。虽然目前的开发还面临着一些挑战,但进一步优化转铁蛋白受体靶向药物递送系统在实现更为精准和有效的肿瘤治疗中仍然十分重要。
As research into transferrin receptors has deepened, drug targeting strategies based on transferrin receptors have seen significant development. Due to the high expression of transferrin receptors in various cells, including tumor cells, they have been developed as potential targets for anti-tumor drugs. There are various development methods for drugs that target tumor surface transferrin receptors for tumor treatment. This article introduces the development of transferrin receptor ligands, as well as tumor drug development based on these ligands, which have shown significant therapeutic effects in various treatments. Although the current development still faces some challenges, further optimization of the transferrin receptor-targeting drug delivery system remains very important in achieving more precise and effective tumor treatment.

References

[1]  Ponka, P. and Lok, C.N. (1999) The Transferrin Receptor: Role in Health and Disease. The International Journal of Biochemistry & Cell Biology, 31, 1111-1137.
https://doi.org/10.1016/S1357-2725(99)00070-9
[2]  Young, S.P., Bomford, A. and Williams, R. (1984) The Effect of the Iron Saturation of Transferrin on Its Binding and Uptake by Rabbit Reticulocytes. Biochemical Journal, 219, 505-510.
https://doi.org/10.1042/bj2190505
[3]  Beutler, E., Gelbart, T., Lee, P., et al. (2000) Molecular Characterization of a Case of Atransferrinemia. Blood, 96, 4071-4074.
https://doi.org/10.1182/blood.V96.13.4071
[4]  Lecureuil, C. (2004) Transgenic Mice as a Model to Study the Regulation of Human Transferrin Expression in Sertoli Cells. Human Reproduction, 19, 1300-1307.
https://doi.org/10.1093/humrep/deh297
[5]  Tsutsumi, M., Skinner, M.K. and Sanders-Bush, E. (1989) Transferrin Gene Expression and Synthesis by Cultured Choroid Plexus Epithelial Cells. Journal of Biological Chemistry, 264, 9626-9631.
https://doi.org/10.1016/S0021-9258(18)60576-9
[6]  Bloch, B., Popovici, T., Levin, M.J., et al. (1985) Transferrin Gene Expression Visualized in Oligodendrocytes of the Rat Brain by Using in Situ Hybridization and Immunohistochemistry. Proceedings of the National Academy of Sciences, 82, 6706-6710.
https://doi.org/10.1073/pnas.82.19.6706
[7]  Gomme, P.T., McCann, K.B. and Bertolini, J. (2005) Transferrin: Structure, Function and Potential Therapeutic Actions. Drug Discovery Today, 10, 267-273.
https://doi.org/10.1016/S1359-6446(04)03333-1
[8]  Inoue, T., Cavanaugh, P.G., Steck, P.A., et al. (1993) Differences in Transferrin Response and Numbers of Transferrin Receptors in Rat and Human Mammary Carcinoma Lines of Different Metastatic Potentials. Journal of Cellular Physiology, 156, 212-217.
https://doi.org/10.1002/jcp.1041560128
[9]  Jing, S.Q. and Trowbridge, I.S. (1987) Identification of the Intermolecular Disulfide Bonds of the Human Transferrin Receptor and Its Lipid-Attachment Site. The EMBO Journal, 6, 327-331.
https://doi.org/10.1002/j.1460-2075.1987.tb04758.x
[10]  Daniels, T.R., Delgado, T., Rodriguez, J.A., et al. (2006) The Transferrin Receptor Part I: Biology and Targeting with Cytotoxic Antibodies for the Treatment of Cancer. Clinical Immunology, 121, 144-158.
https://doi.org/10.1016/j.clim.2006.06.010
[11]  Trowbridge, I.S. (1988) Transferrin Receptor as a Potential Therapeutic Target. In: Waldmann, H., Ed., Chemical Immunology and Allergy, S. Karger AG, Basel, 121-146.
https://doi.org/10.1159/000416377
[12]  Panaccio, M., Zalcberg, J.R., Thompson, C.H., et al. (1987) Heterogeneity of the Human Transferrin Receptor and Use of Anti-Transferrin Receptor Antibodies to Detect Tumours in vivo. Immunology & Cell Biology, 65, 461-472.
https://doi.org/10.1038/icb.1987.55
[13]  Gross, S., Helm, K., Gruntmeir, J.J., et al. (1997) Characterization and Phenotypic Analysis of Differentiating CD34 Human Bone Marrow Cells in Liquid Culture. European Journal of Haematology, 59, 318-326.
https://doi.org/10.1111/j.1600-0609.1997.tb01693.x
[14]  Mojarad-Jabali, S., Mahdinloo, S., Farshbaf, M., et al. (2022) Transferrin Receptor-Mediated Liposomal Drug Delivery: Recent Trends in Targeted Therapy of Cancer. Expert Opinion on Drug Delivery, 19, 685-705.
https://doi.org/10.1080/17425247.2022.2083106
[15]  Walker, R.A. and Day, S.J. (1986) Transferrin Receptor Expression in Non-Malignant and Malignant Human Breast Tissue. The Journal of Pathology, 148, 217-224.
https://doi.org/10.1002/path.1711480305
[16]  Smith, N.W., Strutton, G.M., Walsh, M.D., et al. (1990) Transferrin Receptor Expression in Primary Superficial Human Bladder Tumours Identifies Patients Who Develop Recurrences. British Journal of Urology, 65, 339-344.
https://doi.org/10.1111/j.1464-410X.1990.tb14752.x
[17]  Yang, D.C., Wang, F., Elliott, R.L., et al. (2001) Expression of Transferrin Receptor and Ferritin H-Chain mRNA Are Associated with Clinical and Histopathological Prognostic Indicators in Breast Cancer. Anticancer Research, 21, 541-549.
[18]  Wu, Y., Ma, Z., Mai, X., et al. (2022) Identification of a Novel Inhibitor of TfR1 from Designed and Synthesized Muriceidine a Derivatives. Antioxidants, 11, Article 834.
https://doi.org/10.3390/antiox11050834
[19]  Tortorella, S. and Karagiannis, T.C. (2014) Transferrin Receptor-Mediated Endocytosis: A Useful Target for Cancer Therapy. The Journal of Membrane Biology, 247, 291-307.
https://doi.org/10.1007/s00232-014-9637-0
[20]  Han, L., Huang, R., Liu, S., et al. (2010) Peptide-Conjugated PAMAM for Targeted Doxorubicin Delivery to Transferrin Receptor Overexpressed Tumors. Molecular Pharmaceutics, 7, 2156-2165.
https://doi.org/10.1021/mp100185f
[21]  Riaz, M.K., Zhang, X., Wong, K.H., et al. (2019) Pulmonary Delivery of Transferrin Receptors Targeting Peptide Surface-Functionalized Liposomes Augments the Chemotherapeutic Effect of Quercetin in Lung Cancer Therapy. International Journal of Nanomedicine, 14, 2879-2902.
https://doi.org/10.2147/IJN.S192219
[22]  Dixit, S., Novak, T., Miller, K., et al. (2015) Transferrin Receptor-Targeted Theranostic Gold Nanoparticles for Photosensitizer Delivery in Brain Tumors. Nanoscale, 7, 1782-1790.
https://doi.org/10.1039/C4NR04853A
[23]  Brandsma, M.E., Jevnikar, A.M. and Ma, S. (2011) Recombinant Human Transferrin: Beyond Iron Binding and Transport. Biotechnology Advances, 29, 230-238.
https://doi.org/10.1016/j.biotechadv.2010.11.007
[24]  Liu, G., Mao, J., Jiang, Z., et al. (2013) Transferrin-Modified Doxorubicin-Loaded Biodegradable Nanoparticles Exhibit Enhanced Efficacy in Treating Brain Glioma-Bearing Rats. Cancer Biotherapy and Radiopharmaceuticals, 28, 691-696.
https://doi.org/10.1089/cbr.2013.1480
[25]  Kim, T.H., Jo, Y.G., Jiang, H.H., et al. (2012) PEG-Transferrin Conjugated Trail (TNF-Related Apoptosis-Inducing Ligand) for Therapeutic Tumor Targeting. Journal of Controlled Release, 162, 422-428.
https://doi.org/10.1016/j.jconrel.2012.07.021
[26]  Daniels, T.R., Bernabeu, E., Rodríguez, J.A., et al. (2012) The Transferrin Receptor and the Targeted Delivery of Therapeutic Agents against Cancer. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820, 291-317.
https://doi.org/10.1016/j.bbagen.2011.07.016
[27]  Luria-Pérez, R., Helguera, G. and Rodríguez, J.A. (2016) Antibody-Mediated Targeting of the Transferrin Receptor in Cancer Cells. Boletín Médico del Hospital Infantil de México, 73, 372-379.
https://doi.org/10.1016/j.bmhimx.2016.11.004
[28]  Batra, J.K., Fitzgerald, D.J., Chaudhary, V.K., et al. (1991) Single-Chain Immunotoxins Directed at the Human Transferrin Receptor Containing Pseudomonas Exotoxin A or Diphtheria Toxin: Anti-TFR(Fv)-PE40 and DT388-Anti-TFR(Fv). Molecular and Cellular Biology, 11, 2200-2205.
https://doi.org/10.1128/MCB.11.4.2200
[29]  Suzuki, S., Inoue, K., Hongoh, A., et al. (1997) Modulation of Doxorubicin Resistance in a Doxorubicin-Resistant Human Leukaemia Cell by an Immunoliposome Targeting Transferring Receptor. British Journal of Cancer, 76, 83-89.
https://doi.org/10.1038/bjc.1997.340
[30]  Xu, L., Huang, C.-C., Huang, W., et al. (2002) Systemic Tumor-Targeted Gene Delivery by Anti-Transferrin Receptor ScFv-Immunoliposomes. Molecular Cancer Therapeutics, 1, 337-346.
[31]  Sugyo, A., Tsuji, A.B., Sudo, H., et al. (2015) Evaluation of Efficacy of Radioimmunotherapy with 90Y-Labeled Fully Human Anti-Transferrin Receptor Monoclonal Antibody in Pancreatic Cancer Mouse Models. PLOS ONE, 10, e0123761.
https://doi.org/10.1371/journal.pone.0123761
[32]  Pirollo, K.F., Nemunaitis, J., Leung, P.K., et al. (2016) Safety and Efficacy in Advanced Solid Tumors of a Targeted Nanocomplex Carrying the p53 Gene Used in Combination with Docetaxel: A Phase 1b Study. Molecular Therapy, 24, 1697-1706.
https://doi.org/10.1038/mt.2016.135
[33]  Kawabata, H. (2019) Transferrin and Transferrin Receptors Update. Free Radical Biology and Medicine, 133, 46-54.
https://doi.org/10.1016/j.freeradbiomed.2018.06.037
[34]  Szwed, M., Matusiak, A., Laroche-Clary, A., et al. (2014) Transferrin as a Drug Carrier: Cytotoxicity, Cellular Uptake and Transport Kinetics of Doxorubicin Transferrin Conjugate in the Human Leukemia Cells. Toxicology in Vitro, 28, 187-197.
https://doi.org/10.1016/j.tiv.2013.09.013
[35]  Barabas, K., Sizensky, J.A. and Faulk, W.P. (1991) Evidence in Support of the Plasma Membrane as the Target for Transferrin-Adriamycin Conjugates in K562 Cells. American Journal of Reproductive Immunology, 25, 120-123.
https://doi.org/10.1111/j.1600-0897.1991.tb01078.x
[36]  Barabas, K., Sizensky, J.A. and Faulk, W.P. (1992) Transferrin Conjugates of Adriamycin Are Cytotoxic without Intercalating Nuclear DNA. Journal of Biological Chemistry, 267, 9437-9442.
https://doi.org/10.1016/S0021-9258(19)50442-2
[37]  Beyer, U., Roth, T., Schumacher, P., et al. (1998) Synthesis and in vitro Efficacy of Transferrin Conjugates of the Anticancer Drug Chlorambucil. Journal of Medicinal Chemistry, 41, 2701-2708.
https://doi.org/10.1021/jm9704661
[38]  Elliott, R.L., Stjernholm, R. and Elliott, M.C. (1988) Preliminary Evaluation of Platinum Transferrin (MPTC-63) as a Potential Nontoxic Treatment for Breast Cancer. Cancer Detection and Prevention, 12, 469-480.
[39]  Tanaka, T., Shiramoto, S., Miyashita, M., et al. (2004) Tumor Targeting Based on the Effect of Enhanced Permeability and Retention (EPR) and the Mechanism of Receptor-Mediated Endocytosis (RME). International Journal of Pharmaceutics, 277, 39-61.
https://doi.org/10.1016/j.ijpharm.2003.09.050
[40]  Bejaoui, N., Page, M. and N?el, C. (1991) Cytotoxicity of Transferrin-Daunorubicin Conjugates on Small Cell Carcinoma of the Lung (SCCL) Cell Line NCI-H69. Anticancer Research, 11, 2211-2213.
[41]  Friden, P.M., Walus, L.R., Musso, G.F., et al. (1991) Anti-Transferrin Receptor Antibody and Antibody-Drug Conjugates Cross the Blood-Brain Barrier. Proceedings of the National Academy of Sciences, 88, 4771-4775.
https://doi.org/10.1073/pnas.88.11.4771
[42]  Wu, D. and Pardridge, W.M. (1996) Central Nervous System Pharmacologic Effect in Conscious Rats after Intravenous Injection of a Biotinylated Vasoactive Intestinal Peptide Analog Coupled to a Blood-Brain Barrier Drug Delivery System. Journal of Pharmacology and Experimental Therapeutics, 279, 77-83.
[43]  Zhang, Y. and Pardridge, W.M. (2005) Delivery of β-Galactosidase to Mouse Brain via the Blood-Brain Barrier Transferrin Receptor. Journal of Pharmacology and Experimental Therapeutics, 313, 1075-1081.
https://doi.org/10.1124/jpet.104.082974
[44]  Penichet, M.L. and Morrison, S.L. (2004) Design and Engineering Human Forms of Monoclonal Antibodies. Drug Development Research, 61, 121-136.
https://doi.org/10.1002/ddr.10347
[45]  Adams, G.P. and Weiner, L.M. (2005) Monoclonal Antibody Therapy of Cancer. Nature Biotechnology, 23, 1147-1157.
https://doi.org/10.1038/nbt1137
[46]  Janeway, C., Travers, P., Walport, M., et al. (2001) Immunobiology: The Immune System in Health and Disease. Garland Publishing, New York.
https://library.wur.nl/WebQuery/titel/1654235
[47]  Ng, P.P., Dela Cruz, J.S., Sorour, D.N., et al. (2002) An Anti-Transferrin Receptor-Avidin Fusion Protein Exhibits both Strong Proapoptotic Activity and the Ability to Deliver Various Molecules into Cancer Cells. Proceedings of the National Academy of Sciences, 99, 10706-10711.
https://doi.org/10.1073/pnas.162362999
[48]  Kett, W.C., Osmond, R.I.W., Moe, L., et al. (2003) Avidin Is a Heparin-Binding Protein. Affinity, Specificity and Structural Analysis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1620, 225-234.
https://doi.org/10.1016/S0304-4165(02)00539-1
[49]  Moura, I.C., Lepelletier, Y., Arnulf, B., et al. (2004) A Neutralizing Monoclonal Antibody (mAb A24) Directed against the Transferrin Receptor Induces Apoptosis of Tumor T Lymphocytes from ATL Patients. Blood, 103, 1838-1845.
https://doi.org/10.1182/blood-2003-07-2440
[50]  White, S., Taetle, R., Seligman, P.A., et al. (1990) Combinations of Anti-Transferrin Receptor Monoclonal Antibodies Inhibit Human Tumor Cell Growth in vitro and in vivo: Evidence for Synergistic Antiproliferative Effects. Cancer Research, 50, 6295-6301.
[51]  Crépin, R., Goenaga, A.-L., Jullienne, B., et al. (2010) Development of Human Single-Chain Antibodies to the Transferrin Receptor that Effectively Antagonize the Growth of Leukemias and Lymphomas. Cancer Research, 70, 5497-5506.
https://doi.org/10.1158/0008-5472.CAN-10-0938
[52]  Taetle, R. and Honeysett, J.M. (1987) Effects of Monoclonal Anti-Transferrin Receptor Antibodies on in vitro Growth of Human Solid Tumor Cells. Cancer Research, 47, 2040-2044.
[53]  Petrini, M., Pelosi-Testa, E., Sposi, N.M., et al. (1989) Constitutive Expression and Abnormal Glycosylation of Transferrin Receptor in Acute T-Cell Leukemia. Cancer Research, 49, 6989-6996.
[54]  Taetle, R., Rhyner, K., Castagnola, J., et al. (1985) Role of Transferrin, Fe, and Transferrin Receptors in Myeloid Leukemia Cell Growth. Studies with an Antitransferrin Receptor Monoclonal Antibody. Journal of Clinical Investigation, 75, 1061-1067.
https://doi.org/10.1172/JCI111768
[55]  Brooks, D., Taylor, C., Dos Santos, B., et al. (1995) Phase Ia Trial of Murine Immunoglobulin a Antitransferrin Receptor Antibody 42/6. Clinical Cancer Research, 1, 1259-1265.
[56]  Chiu, S.-J., Liu, S., Perrotti, D., et al. (2006) Efficient Delivery of a Bcl-2-Specific Antisense Oligodeoxyribonucleotide (G3139) via transferrin Receptor-Targeted Liposomes. Journal of Controlled Release, 112, 199-207.
https://doi.org/10.1016/j.jconrel.2006.02.011
[57]  Nam, J.-P., Park, S.-C., Kim, T.-H., et al. (2013) Encapsulation of Paclitaxel into Lauric Acid-O-Carboxymethyl Chitosan-Transferrin Micelles for Hydrophobic Drug Delivery and Site-Specific Targeted Delivery. International Journal of Pharmaceutics, 457, 124-135.
https://doi.org/10.1016/j.ijpharm.2013.09.021
[58]  Huang, Y., He, L., Liu, W., et al. (2013) Selective Cellular Uptake and Induction of Apoptosis of Cancer-Targeted Selenium Nanoparticles. Biomaterials, 34, 7106-7116.
https://doi.org/10.1016/j.biomaterials.2013.04.067

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133