全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

他汀类药物在抗肿瘤药物引起的心脏毒性中的保护作用
Protective Effect of Statins on Cardiotoxicity Induced by Antitumor Drugs

DOI: 10.12677/ACM.2024.143844, PP. 1317-1322

Keywords: 他汀类药物,心脏保护,抗肿瘤药物, Statins, Cardioprotection, Antitumor Drug

Full-Text   Cite this paper   Add to My Lib

Abstract:

他汀类药物属于羟甲基戊二酰辅酶A (HMG-CoA)还原酶抑制剂,可抑制胆固醇生物合成,抗动脉粥样硬化,已经广泛用于冠状动脉粥样硬化性心脏病的治疗,近年来有研究发现他汀类药物在抗肿瘤药物所致心脏毒性中有保护作用。本文对相关报道进行综述,以期对肿瘤患者心血管损伤的预防、治疗提供思路。
Statins are hydroxymethylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitors, which can inhibit cholesterol biosynthesis and anti-atherosclerosis, and have been widely used in the treatment of coronary atherosclerotic heart disease. In recent years, studies have found that statins have a pro-tective effect on cardiotoxicity caused by anti-tumor drugs. In this paper, related reports are re-viewed in order to provide ideas for the prevention and treatment of cardiovascular injury in cancer patients.

References

[1]  Mahmood, S.S., Patel, R.B., Butler, J., et al. (2018) Epirubicin and Long-Term Heart Failure Risk in Breast Cancer Sur-vivors. European Journal of Heart Failure, 20, 1454-1456.
https://doi.org/10.1002/ejhf.1215
[2]  Ameri, P., Canepa, M., Anker, M.S., et al. (2018) Cancer Diagnosis in Patients with Heart Failure: Epidemiology, Clinical Implica-tions and Gaps in Knowledge. European Journal of Heart Failure, 20, 879-887.
https://doi.org/10.1002/ejhf.1165
[3]  Ramkumar, S., Raghunath, A. and Raghunath, S. (2016) Statin Therapy: Re-view of Safety and Potential Side Effects. Acta Cardiological Sinica, 32, 631-639.
[4]  Sexton, T., Wallace, E.L. and Smyth, S.S. (2016) Anti-Thrombotic Effects of Statins in Acute Coronary Syndromes: At the Intersection of Thrombosis, Inflammation, and Platelet-Leukocyte Interactions. Current Cardiology Reviews, 12, 324-329.
https://doi.org/10.2174/1573403X12666160504100312
[5]  Dimitroulakos, J., Nohynek, D., Backway, K.L., et al. (1999) Increased Sensitivity of Acute Myeloid Leukemias to Lovastatin-Induced Apoptosis: A Potential Therapeutic Ap-proach. Blood, 93, 1308-1318.
https://doi.org/10.1182/blood.V93.4.1308.404k08_1308_1318
[6]  Dulak, J. and Jozkowicz, A. (2005) An-ti-Angiogenic and Anti-Inflammatory Effects of Statins: Relevance to Anti-Cancer Therapy. Current Cancer Drug Tar-gets, 5, 579-594.
https://doi.org/10.2174/156800905774932824
[7]  Lee, S.J., Lee, I., Lee, J., et al. (2014) Statins, 3-Hydroxy-3-Methylglutaryl Coenzyme a Reductase Inhibitors, Potentiate the Anti-Angiogenic Effects of Bevacizumab by Suppressing Angiopoietin2, BiP, and Hsp90alpha in Human Colorectal Cancer. British Journal of Cancer, 111, 497-505.
https://doi.org/10.1038/bjc.2014.283
[8]  Wang, J.C., Li, X.X., Sun, X., et al. (2018) Activation of AMPK by Simvastatin Inhibited Breast Tumor Angiogenesis via Impeding HIF-1alpha-Induced Pro-Angiogenic Factor. Cancer Science, 109, 1627-1637.
https://doi.org/10.1111/cas.13570
[9]  Zahedipour, F., Butler, A.E., Rizzo, M., et al. (2022) Statins and Angio-genesis in Non-Cardiovascular Diseases. Drug Discovery Today, 27, Article ID: 103320.
https://doi.org/10.1016/j.drudis.2022.07.005
[10]  Mitry, M.A., Laurent, D., Keith, B.L., et al. (2020) Accelerated Cardiomyocyte Senescence Contributes to Late-Onset Doxorubicin-Induced Cardiotoxicity. American Journal of Physi-ology-Cell Physiology, 318, C380-C391.
https://doi.org/10.1152/ajpcell.00073.2019
[11]  Sobczuk, P., Czerwinska, M., Kleibert, M., et al. (2022) Anthracy-cline-Induced Cardiotoxicity and Renin-Angiotensin-Aldosterone System—From Molecular Mechanisms to Therapeutic Applications. Heart Failure Reviews, 27, 295-319.
https://doi.org/10.1007/s10741-020-09977-1
[12]  Zhang, S., Liu, X., Bawa-Khalfe, T., et al. (2012) Identification of the Molecular Basis of Doxorubicin-Induced Cardiotoxicity. Na-ture Medicine, 18, 1639-1642.
https://doi.org/10.1038/nm.2919
[13]  Pecoraro, M., Marzocco, S., Belvedere, R., et al. (2023) Simvastatin Reduces Doxorubicin-Induced Cardiotoxicity: Effects beyond Its Antioxidant Activity. Interna-tional Journal of Molecular Sciences, 24, Article No. 7573.
https://doi.org/10.3390/ijms24087573
[14]  Oh, J., Lee, B.S., Lim, G., et al. (2020) Atorvastatin Protects Cardio-myocyte from Doxorubicin Toxicity by Modulating Survivin Expression through FOXO1 Inhibition. Journal of Molec-ular and Cellular Cardiology, 138, 244-255.
https://doi.org/10.1016/j.yjmcc.2019.12.007
[15]  Henninger, C., Huelsenbeck, S., Wenzel, P., et al. (2015) Chronic Heart Damage Following Doxorubicin Treatment Is Alleviated by Lovastatin. Pharmacological Research, 91, 47-56.
https://doi.org/10.1016/j.phrs.2014.11.003
[16]  Kim, Y.H., Park, S.M., Kim, M., et al. (2012) Cardioprotective Ef-fects of Rosuvastatin and Carvedilol on Delayed Cardiotoxicity of Doxorubicin in Rats. Toxicology Mechanisms and Methods, 22, 488-498.
https://doi.org/10.3109/15376516.2012.678406
[17]  Dadson, K., Thavendiranathan, P., Hauck, L., et al. (2022) Statins Protect against Early Stages of Doxorubicin-Induced Cardiotoxicity through the Regulation of Akt Signaling and SERCA2. CJC Open, 4, 1043-1052.
https://doi.org/10.1016/j.cjco.2022.08.006
[18]  Shahid, I., Yamani, N., Ali, A., et al. (2021) Meta-Analysis Evalu-ating the Use of Statins to Attenuate Cardiotoxicity in Cancer Patients Receiving Anthracyclines and Trastuzumab-Based Chemotherapy. American Journal of Cardiology, 156, 142-145.
https://doi.org/10.1016/j.amjcard.2021.07.001
[19]  Chotenimitkhun, R., D’Agostino, R.J., Lawrence, J.A., et al. (2015) Chronic Statin Administration May Attenuate Early Anthracycline-Associated Declines in Left Ventricular Ejec-tion Function. Canadian Journal of Cardiology, 31, 302-307.
https://doi.org/10.1016/j.cjca.2014.11.020
[20]  Titus, A., Cheema, H.A., Shafiee, A., et al. (2023) Statins for Attenuating Cardiotoxicity in Patients Receiving Anthracyclines: A Systematic Review and Meta-Analysis. Current Problems in Cardiology, 48, Article ID: 101885.
https://doi.org/10.1016/j.cpcardiol.2023.101885
[21]  Mohamed, A.L., El-Abd, A.A., Mohamed, H.G., et al. (2024) Role of Statin Therapy in Prevention of Anthracycline-Induced Cardiotoxicity: A Three Dimentional Echocardiography Study. Current Problems in Cardiology, 49, Article ID: 102130.
https://doi.org/10.1016/j.cpcardiol.2023.102130
[22]  Neilan, T.G., Quinaglia, T., Onoue, T., et al. (2023) Atorvas-tatin for Anthracycline-Associated Cardiac Dysfunction: The STOP-CA Randomized Clinical Trial. JAMA, 330, 528-536.
https://doi.org/10.1001/jama.2023.11887
[23]  De Keulenaer, G.W., Doggen, K. and Lemmens, K. (2010) The Vul-nerability of the Heart as a Pluricellular Paracrine Organ: Lessons from Unexpected Triggers of Heart Failure in Targeted ErbB2 Anticancer Therapy. Circulation Research, 106, 35-46.
https://doi.org/10.1161/CIRCRESAHA.109.205906
[24]  Kabel, A.M. and Elkhoely, A.A. (2017) Targeting Proin-flammatory Cytokines, Oxidative Stress, TGF-Beta1 and STAT-3 by Rosuvastatin and Ubiquinone to Ameliorate Trastuzumab Cardiotoxicity. Biomedicine & Pharmacotherapy, 93, 17-26.
https://doi.org/10.1016/j.biopha.2017.06.033
[25]  Calvillo-Arguelles, O., Abdel-Qadir, H., Michalowska, M., et al. (2019) Cardioprotective Effect of Statins in Patients with HER2-Positive Breast Cancer Receiving Trastuzumab Therapy. Canadian Journal of Cardiology, 35, 153-159.
https://doi.org/10.1016/j.cjca.2018.11.028
[26]  Abdel-Qadir, H., Bobrowski, D., Zhou, L., et al. (2021) Statin Ex-posure and Risk of Heart Failure after Anthracycline- or Trastuzumab-Based Chemotherapy for Early Breast Cancer: A Propensity Score-Matched Cohort Study. Journal of the American Heart Association, 10, E018393.
https://doi.org/10.1161/JAHA.119.018393
[27]  Zamorano, J.L., Lancellotti, P., Rodriguez, M.D., et al. (2016) 2016 ESC Position Paper on Cancer Treatments and Cardiovascular Toxicity Developed Under the Auspices of the ESC Committee for Practice Guidelines: The Task Force for Cancer Treatments and Cardiovascular Toxicity of the European Society of Cardiology (ESC). European Heart Journal, 37, 2768-2801.
https://doi.org/10.1093/eurheartj/ehw211
[28]  Iqubal, A., Iqubal, M.K., Sharma, S., et al. (2019) Molecular Mech-anism Involved in Cyclophosphamide-Induced Cardiotoxicity: Old Drug with a New Vision. Life Sciences, 218, 112-131.
https://doi.org/10.1016/j.lfs.2018.12.018
[29]  Refaie, M.M., El-Hussieny, M., Bayoumi, A.M., et al. (2022) Simvastatin Cardioprotection in Cyclophosphamide-Induced Toxicity via the Modulation of Inflam-masome/Caspase1/Interleukin1beta Pathway. Human & Experimental Toxicology, 41, Article ID: 774837616.
https://doi.org/10.1177/09603271221111440
[30]  Hu, Y., Sun, B., Zhao, B., et al. (2018) Cisplatin-Induced Cardi-otoxicity with Midrange Ejection Fraction: A Case Report and Review of the Literature. Medicine (Baltimore), 97, E13807.
https://doi.org/10.1097/MD.0000000000013807
[31]  Chowdhury, S., Sinha, K., Banerjee, S., et al. (2016) Taurine Protects Cisplatin Induced Cardiotoxicity by Modulating Inflammatory and Endoplasmic Reticulum Stress Re-sponses. Biofactors, 42, 647-664.
https://doi.org/10.1002/biof.1301
[32]  Saleh, D.O., Mansour, D.F. and Mostafa, R.E. (2020) Rosuvastatin and Simvastatin Attenuate Cisplatin-Induced Cardiotoxicity via Disruption of Endoplasmic Reticulum Stress-Mediated Apoptotic Death in Rats: Targeting ER-Chaperone GRP78 and Calpain-1 Pathways. Toxicology Reports, 7, 1178-1186.
https://doi.org/10.1016/j.toxrep.2020.08.026
[33]  Herrmann, J. (2020) Vascular Toxic Effects of Cancer Therapies. Nature Reviews Cardiology, 17, 503-522.
https://doi.org/10.1038/s41569-020-0347-2
[34]  Herrmann, J. (2020) Adverse Cardiac Effects of Cancer Therapies: Cardiotoxicity and Arrhythmia. Nature Reviews Cardiology, 17, 474-502.
https://doi.org/10.1038/s41569-020-0348-1
[35]  Campia, U., Moslehi, J.J., Amiri-Kordestani, L., et al. (2019) Cardio-Oncology: Vascular and Metabolic Perspectives: A Scientific Statement from the American Heart Association. Circulation, 139, E579-E602.
https://doi.org/10.1161/CIR.0000000000000641
[36]  Muhammad, R.N., Sallam, N. and El-Abhar, H.S. (2020) Activated ROCK/Akt/ENOS and ET-1/ERK Pathways in 5-Fluorouracil-Induced Cardiotoxicity: Modulation by Simvas-tatin. Scientific Reports, 10, Article No. 14693.
https://doi.org/10.1038/s41598-020-71531-8
[37]  Madeddu, C., Deidda, M., Piras, A., et al. (2016) Pathophysiol-ogy of Cardiotoxicity Induced by Nonanthracycline Chemotherapy. Journal of Cardiovascular Medicine (Hagerstown), 17, S12-S18.
https://doi.org/10.2459/JCM.0000000000000376
[38]  Wu, P., Oren, O., Gertz, M.A., et al. (2020) Proteasome In-hibitor-Related Cardiotoxicity: Mechanisms, Diagnosis, and Management. Current Oncology Reports, 22, Article No. 66.
https://doi.org/10.1007/s11912-020-00931-w
[39]  Drobni, Z.D., Alvi, R.M., Taron, J., et al. (2020) Association between Immune Checkpoint Inhibitors with Cardiovascular Events and Atherosclerotic Plaque. Circulation, 142, 2299-2311.
https://doi.org/10.1161/CIRCULATIONAHA.120.049981
[40]  Han, X., Zhou, Y. and Liu, W. (2017) Precision Cardio-Oncology: Understanding the Cardiotoxicity of Cancer Therapy. NPJ Precision Oncology, 1, Article No. 31.
https://doi.org/10.1038/s41698-017-0034-x
[41]  Ewer, M.S., Suter, T.M., Lenihan, D.J., et al. (2014) Cardiovas-cular Events among 1090 Cancer Patients Treated with Sunitinib, Interferon, or Placebo: A Comprehensive Adjudicated Database Analysis Demonstrating Clinically Meaningful Reversibility of Cardiac Events. European Journal of Cancer, 50, 2162-2170.
https://doi.org/10.1016/j.ejca.2014.05.013
[42]  Cole, D.C. and Frishman, W.H. (2018) Cardiovascular Complica-tions of Proteasome Inhibitors Used in Multiple Myeloma. Cardiology in Review, 26, 122-129.
https://doi.org/10.1097/CRD.0000000000000183
[43]  Zhao, Y., Xue, T., Yang, X., et al. (2010) Autophagy Plays an Important Role in Sunitinib-Mediated Cell Death in H9c2 Cardiac Muscle Cells. Toxicology and Applied Pharmacol-ogy, 248, 20-27.
https://doi.org/10.1016/j.taap.2010.07.007
[44]  Cohen, J.D., Babiarz, J.E., Abrams, R.M., et al. (2011) Use of Human Stem Cell Derived Cardiomyocytes to Examine Sunitinib Mediated Cardiotoxicity and Electrophysiological Al-terations. Toxicology and Applied Pharmacology, 257, 74-83.
https://doi.org/10.1016/j.taap.2011.08.020
[45]  Zheng, Y., Huang, S., Xie, B., et al. (2023) Cardiovascular Toxicity of Proteasome Inhibitors in Multiple Myeloma Therapy. Current Problems in Cardiology, 48, Article ID: 101536.
https://doi.org/10.1016/j.cpcardiol.2022.101536
[46]  Lyon, A.R., Yousaf, N., Battisti, N., et al. (2018) Immune Checkpoint Inhibitors and Cardiovascular Toxicity. The Lancet Oncology, 19, E447-E458.
https://doi.org/10.1016/S1470-2045(18)30457-1
[47]  Nardi, A.I., Itzhaki, B.Z.O. and Kornowski, R. (2022) The Potential Cardiotoxicity of Immune Checkpoint Inhibitors. Journal of Clinical Medicine, 11, Article No. 865.
https://doi.org/10.3390/jcm11030865
[48]  Hu, J.R., Florido, R., Lipson, E.J., et al. (2019) Cardiovascular Toxici-ties Associated with Immune Checkpoint Inhibitors. Cardiovascular Research, 115, 854-868.
https://doi.org/10.1093/cvr/cvz026
[49]  Minegishi, S., Horita, N., Ishigami, T., et al. (2023) Cardiotoxicity Associ-ated with Immune Checkpoint Inhibitors. Cancers (Basel), 15, Article No. 5487.
https://doi.org/10.3390/cancers15225487

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133