全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

提高难溶性中药生物利用度的技术方法
Technical Methods for Improving the Bioavailability of Insoluble Traditional Chinese Medicine

DOI: 10.12677/ACM.2024.143765, PP. 739-749

Keywords: 口服生物利用度,难溶性成分,生物药剂学分类,药物递送系统
Oral Bioavailability
, Insoluble Ingredients, Classification of Biopharmaceuticals, Drug Delivery Sys-tem

Full-Text   Cite this paper   Add to My Lib

Abstract:

口服给药是最方便和广泛使用的药物给药方法之一。然而,许多药物由于其吸收差、口服生物利用度低而难以口服给药。根据药物溶解度和透膜性,本文介绍了低生物利用度中药成分的生物药剂学分类系统。并以提高难溶性成分的溶解度和口服吸收为立足点,综述了近年来可提高难溶性成分口服生物利用度的各类制剂技术,以期为相关新制剂的开发提供参考。
Oral administration is one of the most convenient and widely used methods of drug administration. However, many drugs are difficult to administer orally due to their poor absorption and low oral bioavailability. Based on drug solubility and permeability, a biopharmaceutical classification sys-tem for low-bioavailability TCM ingredients is introduced. Based on improving the solubility and oral absorption of poorly soluble components, various preparation technologies that can improve the oral bioavailability of poorly soluble components in recent years are reviewed, in order to pro-vide a reference for the development of related new preparations.

References

[1]  Andrews, G. P., Qian, K., Jacobs, E., et al. (2023) High Drug Loading Nanosized Amorphous Solid Dispersion (NASD) with Enhanced in Vitro Solubility and Permeability: Benchmarking Conventional ASD. International Journal of Phar-maceutics, 632, Article ID: 122551.
https://doi.org/10.1016/j.ijpharm.2022.122551
[2]  Tian, Z., Mai, Y., Meng, T., et al. (2021) Nanocrystals for Improving Oral Bioavailability of Drugs: Intestinal Transport Mechanisms and Influ-encing Factors. AAPS PharmSciTech, 22, Article No. 179.
https://doi.org/10.1208/s12249-021-02041-7
[3]  李嘉雯, 刘伟新, 王晶, 等. 新型药物递送系统在口服给药方面的应用前景[J]. 动物医学进展, 2023, 44(8): 121-126.
[4]  李亚平, 张志文, 王冠茹, 等. 提高难溶性药物口服生物利用度的制剂新技术[M]. 上海: 中国科学院上海药物研究所, 2021.
[5]  曹麒麟, 韩晓璐, 高静, 等. 提高难溶性药物生物利用度的研究进展[J]. 湖北科技学院学报(医学版), 2021, 35(4): 352-356.
[6]  Kotta, S., Khan, A.W., Pramod, K., et al. (2012) Exploring Oral Nanoemulsions for Bioavailability Enhancement of Poorly Water-Soluble Drugs. Expert Opinion on Drug Delivery, 9, 585-598.
https://doi.org/10.1517/17425247.2012.668523
[7]  范未伟. 胰岛素新型口服纳米载体的设计及其体内高效递送机制的研究[D]: [博士学位论文]. 北京: 中国科学院大学(中国科学院上海药物研究所), 2019.
[8]  Padhye, T., Maravajjala, K.S., Swetha, K.L., et al. (2021) A Comprehensive Review of the Strategies to Improve Oral Drug Ab-sorption with Special Emphasis on the Cellular and Molecular Mechanisms. Journal of Drug Delivery Science and Technology, 61, Article ID: 102178.
https://doi.org/10.1016/j.jddst.2020.102178
[9]  Gaucher, G., Satturwar, P., Jones, M.C., et al. (2010) Polymeric Micelles for Oral Drug Delivery. European Journal of Pharmaceutics and Bio-pharmaceutics, 76, 147-158.
https://doi.org/10.1016/j.ejpb.2010.06.007
[10]  Fine-Shamir, N., Beig, A., Miller, J.M., et al. (2020) The Solubility, Permeability and the Dose as Key Factors in Formulation Development for Oral Lipo-philic Drugs: Maximizing the Bioavailability of Carbamazepine with a Cosolvent-Based Formulation. International Journal of Pharmaceutics, 582, Article ID: 119307.
https://doi.org/10.1016/j.ijpharm.2020.119307
[11]  Dahan, A., Beig, A., Lindley, D., et al. (2016) The Solubili-ty-Permeability Interplay and Oral Drug Formulation Design: Two Heads Are Better than One. Advanced Drug Delivery Reviews, 101, 99-107.
https://doi.org/10.1016/j.addr.2016.04.018
[12]  Masaoka, Y., Tanaka, Y., Kataoka, M., et al. (2006) Site of Drug Absorption after Oral Administration: Assessment of Membrane Permeability and Luminal Concentration of Drugs in Each Segment of Gastrointestinal Tract. European Journal of Pharmaceutical Sciences, 29, 240-250.
https://doi.org/10.1016/j.ejps.2006.06.004
[13]  Liu, Y., Yang, T., Wei, S., et al. (2018) Mucus Adhesion- and Penetration-Enhanced Liposomes for Paclitaxel Oral Delivery. International Journal of Pharmaceutics, 537, 245-256.
https://doi.org/10.1016/j.ijpharm.2017.12.044
[14]  Enright, E.F., Griffin, B.T., Gahan, C.G.M., et al. (2018) Mi-crobiome-Mediated Bile Acid Modification: Role in Intestinal Drug Absorption and Metabolism. Pharmacological Re-search, 133, 170-186.
https://doi.org/10.1016/j.phrs.2018.04.009
[15]  Wahlstr?m, A., Sayin, S.I., Marschall, H.U., et al. (2016) Intestinal Crosstalk Between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism, 24, 41-50.
https://doi.org/10.1016/j.cmet.2016.05.005
[16]  Pan, W., Xue, B., Yang, C., et al. (2018) Biopharmaceutical Char-acters and Bioavailability Improving Strategies of Ginsenosides. Fitoterapia, 129, 272-282.
https://doi.org/10.1016/j.fitote.2018.06.001
[17]  Yu, M., Yang, Y., Zhu, C., et al. (2016) Advances in the Transep-ithelial Transport of Nanoparticles. Drug Discovery Today, 21, 1155-1161.
https://doi.org/10.1016/j.drudis.2016.05.007
[18]  周晶. 调控肠道代谢提高药物口服生物利用度的制剂技术研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2015.
[19]  Suzuki, K., Taniyama, K., Aoyama, T., et al. (2020) Evaluation of the Role of P-Glycoprotein (P-Gp)-Mediated Efflux in the Intestinal Absorption of Common Substrates with Elacridar, a P-Gp Inhibitor, in Rats. European Journal of Drug Metabolism and Pharmacokinetics, 45, 385-392.
https://doi.org/10.1007/s13318-019-00602-7
[20]  曹姗, 夏云, 曲虹, 等. 纳米技术提高难溶性药物口服给药生物利用度[J]. 吉林医学, 2020, 41(1): 206-208.
[21]  Chen, T., Li, Y., Wu, W., et al. (2016) Enhanced Dissolution, Oral Bioavailability and Brain Delivery by Formulation Schisantherin A into Nanocrystals. Nanomedicine: Nanotechnol-ogy, Biology and Medicine, 12, 503.
https://doi.org/10.1016/j.nano.2015.12.160
[22]  Bapat, P., Ghadi, R., Chaudhari, D., et al. (2019) Tocophersolan Stabilized Lipid Nanocapsules with High Drug Loading to Improve the Permeability and Oral Bioavailability of Curcu-min. International Journal of Pharmaceutics, 560, 219-227.
https://doi.org/10.1016/j.ijpharm.2019.02.013
[23]  Yavarpour-Bali, H., Ghasemi-Kasman, M. and Pirzadeh, M. (2019) Curcumin-Loaded Nanoparticles: A Novel Therapeutic Strategy in Treatment of Central Nervous System Disor-ders. International Journal of Nanomedicine, 14, 4449-4460.
https://doi.org/10.2147/IJN.S208332
[24]  Santos, A.C., Pereira, I., Pereira-Silva, M., et al. (2019) Nanotechnology-Based Formulations for Resveratrol Delivery: Effects on Resveratrol in Vivo Bioavailability and Bioactivity. Colloids and Surfaces B: Biointerfaces, 180, 127-140.
https://doi.org/10.1016/j.colsurfb.2019.04.030
[25]  Annaji, M., Poudel, I., Boddu, S.H.S., et al. (2021) Resvera-trol-Loaded Nanomedicines for Cancer Applications. Cancer Reports, 4, e1353.
https://doi.org/10.1002/cnr2.1353
[26]  Baek, Y., Jeong, E.W. and Lee, H.G. (2023) Encapsulation of Resveratrol within Size-Controlled Nanoliposomes: Impact on Solubility, Stability, Cellular Permeability, and Oral Bioavailability. Colloids and Surfaces B: Biointerfaces, 224, Article ID: 113205.
https://doi.org/10.1016/j.colsurfb.2023.113205
[27]  苏元元, 付宇, 李楠楠, 等. 三种达玛烷型皂苷的生物药剂学分类及吸收机制研究[J]. 中国现代中药, 2018, 20(9): 1150-1156.
[28]  Wang, Q., Wang, Y., Xie, Y., et al. (2021) Nonionic Surfactant Vesicles as a Novel Drug De-livery System for Increasing the Oral Bioavailability of Ginsenoside Rb1. Food Bioscience, 42, Article ID: 101064.
https://doi.org/10.1016/j.fbio.2021.101064
[29]  李楠楠. 萜类中药有效成分BCS分类及吸收机制研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨商业大学, 2019.
[30]  Wu, C., Li, B., Zhang, Y., et al. (2020) Intranasal Delivery of Paeoniflorin Nanocrystals for Brain Targeting. Asian Journal of Pharmaceutical Sciences, 15, 326-335.
https://doi.org/10.1016/j.ajps.2019.11.002
[31]  Li, H., Cao, X., Liu, Y., et al. (2019) Establishment of Modified Biopharmaceutics Classification System Absorption Model for Oral Traditional Chinese Medicine (Sanye Tablet). Jour-nal of Ethnopharmacology, 244, Article ID: 112148.
https://doi.org/10.1016/j.jep.2019.112148
[32]  Bohley, M., Haunberger, A. and Goepferich, A.M. (2019) Intracel-lular Availability of Poorly Soluble Drugs from Lipid Nanocapsules. European Journal of Pharmaceutics and Biophar-maceutics, 139, 23-32.
https://doi.org/10.1016/j.ejpb.2019.03.007
[33]  Zhang, X., Su, J., Wang, X., et al. (2022) Preparation and Proper-ties of Cyclodextrin Inclusion Complexes of Hyperoside. Molecules, 27, Article 2761.
https://doi.org/10.3390/molecules27092761
[34]  Wang, Y., Tan, X., Fan, X., et al. (2021) Current Strategies for Oral Delivery of BCS IV Drug Nanocrystals: Challenges, Solutions and Future Trends. Expert Opinion on Drug Deliv-ery, 18, 1211-1228.
https://doi.org/10.1080/17425247.2021.1903428
[35]  Fu, W., Liang, Y., Xie, Z., et al. (2021) Preparation and Evaluation of Lecithin/Zein Hybrid Nanoparticles for the Oral Delivery of Panax Notoginseng Saponins. European Journal of Pharmaceutical Sciences, 164, Article ID: 105882.
https://doi.org/10.1016/j.ejps.2021.105882
[36]  Zare-Zardini, H., Alemi, A., Taheri-Kafrani, A., et al. (2020) As-sessment of a New Ginsenoside Rh2 Nanoniosomal Formulation for Enhanced Antitumor Efficacy on Prostate Cancer: An in Vitro Study. Drug Design, Development and Therapy, 14, 3315-3324.
https://doi.org/10.2147/DDDT.S261027
[37]  Cheng, M., Yuan, F., Liu, J., et al. (2020) Fabrication of Fine Puerarin Nanocrystals by Box-Behnken Design to Enhance Intestinal Absorption. AAPS PharmSciTech, 21, 90-101.
https://doi.org/10.1208/s12249-019-1616-4
[38]  Huang, T., Liu, Y. and Zhang, C. (2019) Pharmacokinetics and Bioavailability Enhancement of Baicalin: A Review. European Journal of Drug Metabolism and Pharmacokinetics, 44, 159-168.
https://doi.org/10.1007/s13318-018-0509-3
[39]  Xu, W., Niu, Y., Ai, X., et al. (2022) Liver-Targeted Nanoparti-cles Facilitate the Bioavailability and Anti-HBV Efficacy of Baicalin in Vitro and in Vivo. Biomedicines, 10, 900-915.
https://doi.org/10.3390/biomedicines10040900
[40]  周剑雄, 吴送姑, 龚俊波, 等. 小檗碱的药理活性以及提升其口服生物利用度的策略[J]. 药学学报, 2022, 57(5): 1263-1272.
[41]  容爽. 小檗碱及其纳米制剂的生物活性研究[D] : [硕士学位论文]. 重庆: 西南大学, 2022.
[42]  蒋蕾, 孙旭, 刘肖莹, 等. 小檗碱纳米制剂的制备及表征研究[J]. 中医药信息, 2022, 39(3): 16-19.
[43]  Alsabeelah, N. and Kumar, V. (2022) Quality by Design-Based Optimiza-tion of Formulation and Process Parameters for Berberine Nanosuspension for Enhancing Its Dissolution Rate, Bioa-vailability, and Cardioprotective Activity. Journal of Food Biochemistry, 46, e14361.
https://doi.org/10.1111/jfbc.14361
[44]  Li, Z., Liu, Y., Wang, J., et al. (2022) Baicalin-Berberine Complex Nano-crystals Orally Promote the Co-Absorption of Two Components. Drug Delivery and Translational Research, 12, 3017-3028.
https://doi.org/10.1007/s13346-022-01167-w
[45]  孙嘉慧, 唐海, 杨美青, 等. 固体分散体技术提高难溶性药物溶解度研究进展[J]. 化工与医药工程, 2021, 42(5): 38-43.
[46]  Al-Kassas, R., Bansal, M. and Shaw, J. (2017) Nanosizing Techniques for Improving Bioavailability of Drugs. Journal of Controlled Release, 260, 202-212.
https://doi.org/10.1016/j.jconrel.2017.06.003
[47]  朱卫丰, 丁权, 李文栋, 等. 口服纳米颗粒在胃肠道中的跨膜转运研究进展[J]. 中国实验方剂学杂志, 2021, 27(9): 215-223.
[48]  张军. 基于微流控技术制备姜黄素纳米晶及其口服生物利用度研究[D] : [硕士学位论文]. 大理: 大理大学, 2022.
[49]  Mcclements, D.J. (2010) Emulsion Design to Improve the Delivery of Functional Lipophilic Components. Annual Review of Food Science and Technology, 1, 241-269.
https://doi.org/10.1146/annurev.food.080708.100722
[50]  Chen, B.H. and Stephen Inbaraj, B. (2019) Nanoemulsion and Nanoliposome Based Strategies for Improving Anthocyanin Stability and Bioavailability. Nutrients, 11, Article 1052.
https://doi.org/10.3390/nu11051052
[51]  Chen, T.E., Tu, L., Wang, G., et al. (2020) Mul-ti-Functional Chitosan Polymeric Micelles as Oral Paclitaxel Delivery Systems for Enhanced Bioavailability and An-ti-Tumor Efficacy. International Journal of Pharmaceutics, 578, Article ID: 119105.
https://doi.org/10.1016/j.ijpharm.2020.119105
[52]  Teixeira, M.C., Carbone, C. and Souto, E.B. (2017) Beyond Liposomes: Recent Advances on Lipid Based Nanostructures for Poorly Soluble/Poorly Permeable Drug Delivery. Pro-gress in Lipid Research, 68, 1-11.
https://doi.org/10.1016/j.plipres.2017.07.001
[53]  Talegaonkar, S. and Bhattacharyya, A. (2019) Potential of Lipid Nanoparticles (SLNs and NLCs) in Enhancing Oral Bioavailability of Drugs with Poor Intestinal Permeability. AAPS PharmSciTech, 20, 121-135.
https://doi.org/10.1208/s12249-019-1337-8
[54]  Nguyen, V.H., Thuy, V.N., Van, T.V., et al. (2022) Nanostruc-tured Lipid Carriers and Their Potential Applications for Versatile Drug Delivery via Oral Administration. OpenNano, 8, Article ID: 100064.
https://doi.org/10.1016/j.onano.2022.100064
[55]  Ashour, A.A., Ramadan, A.A., Abdelmonsif, D.A., et al. (2020) Enhanced Oral Bioavailability of Tanshinone IIA Using Lipid Nanocapsules: Formulation, In-Vitro Appraisal and Phar-macokinetics. International Journal of Pharmaceutics, 586, Article ID: 119598.
https://doi.org/10.1016/j.ijpharm.2020.119598
[56]  Mittal, P. and Hazari, P.P. (2023) 14—Nanotubes-Based Brain Targeted Drug Delivery System: A Step toward Improving Bioavailability and Drug Enhancement at the Target Site. In: Sharma, N. and Butola, B.S., Eds., Fiber and Textile Engineering in Drug Delivery Systems, Woodhead Publishing, Cambridge, 417-441.
https://doi.org/10.1016/B978-0-323-96117-2.00009-1
[57]  Zhou, W., Li, B., Min, R., et al. (2023) Mu-cus-Penetrating Dendritic Mesoporous Silica Nanoparticle Loading Drug Nanocrystal Clusters to Enhance Permeation and Intestinal Absorption. Biomaterials Science, 11, 1013-1030.
https://doi.org/10.1039/D2BM01404A
[58]  Tollemeto, M., Huang, Z., Christensen, J.B., et al. (2023) Mucoad-hesive Dendrons Conjugated to Mesoporous Silica Nanoparticles as a Drug Delivery Approach for Orally Administered Biopharmaceuticals. ACS Applied Materials & Interfaces, 15, 8798-8810.
https://doi.org/10.1021/acsami.2c16502
[59]  Bazzo, G.C., Pezzini, B.R. and Stulzer, H.K. (2020) Eutectic Mixtures as an Approach to Enhance Solubility, Dissolution Rate and Oral Bioavailability of Poorly Water-Soluble Drugs. Inter-national Journal of Pharmaceutics, 588, Article ID: 119741.
https://doi.org/10.1016/j.ijpharm.2020.119741
[60]  Tran, P., Pyo, Y.C., Kim, D.H., et al. (2019) Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics, 11, Article 132.
https://doi.org/10.3390/pharmaceutics11030132
[61]  Alshehri, S., Imam, S.S., Hussain, A., et al. (2020) Potential of Solid Dispersions to Enhance Solubility, Bioavailability, and Therapeutic Efficacy of Poorly Water-Soluble Drugs: Newer Formulation Techniques, Current Marketed Scenario and Patents. Drug Delivery, 27, 1625-1643.
https://doi.org/10.1080/10717544.2020.1846638

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133