This
work details the development of a broad-spectrum LNA (Low Noise Amplifier)
circuit using a 65nm CMOS technology. The design incorporates an inductive degeneracy
circuit, employing a theoretical approach to enhance gain, minimize noise
levels, and uphold low power consumption. The progression includes a shift to a
cascode structure to further refine LNA parameters. Ultimately, with a 1.8V bias,
the achieved performance showcases a gain-to-noise figure ratio of 16 dB/0.5
dB, an IIP3 linearity at 5.1 dBm, and a power consumption of 3 mW. This
architecture is adept at operating across a wide frequency band spanning from
0.5 GHz to 6 GHz, rendering it applicable in diverse RF scenarios.
References
[1]
Mahmou, R. and Faitah, K. (2012) Designing of RF Single Balanced Mixer with a 65 nm CMOS Technology Dedicated to Low Power Consumption Wireless Applications. IJCSI, 9, 358-363.
[2]
Petit, G. (2005) Etude de Structures Radiofréquences en bande x sur Technologie CMOS-SOS. http://f4hla.free.fr/these/TheseGillesPETIT.pdf
[3]
As, D.E. and Yelten, M.B. (2023) A Highly-Linear, sub-mW LNA at 2.4 GHz in 40 nm CMOS Process. Integration, 88, 278-285.
https://doi.org/10.1016/j.vlsi.2022.09.010
[4]
Gozalpour, F., Dodangeh, M., Yavari, M. and Mirvakili, A. (2022) An Improved Cascode Common-Source LNA with Inductive Source. International Journal of Electronics and Communications, 156, Article ID: 154406.
https://doi.org/10.1016/j.aeue.2022.154406
[5]
Nejadhasan, S., Zaheri, F., Abiri, E. and Salehi, M.R. (2022) PVT-Compensated Low Voltage LNA Based on Variable Current Source for Low Power Applications. AEU—International Journal of Electronics and Communications, 143, Article ID: 154042. https://doi.org/10.1016/j.aeue.2021.154042
[6]
Farahani, M.M., Mazloum, J. and Fouladian, M. (2023) An Ultra-Wideband Low Noise Amplifier with Cascaded Flipped-Active Inductor for Cognitive Radio Applications. Integration, 93, Article ID: 1102046.
https://doi.org/10.1016/j.vlsi.2023.05.010
[7]
Salighe, E. and Mojarad, M. (2023) A Linearity Enhancement Technique for Low- Noise Transconductance Amplifiers in SAW-Less Receivers. International Journal of Electronics and Communications, 160, Article ID: 1154499.
https://doi.org/10.1016/j.aeue.2022.154499
[8]
Britton, G., Lauga-Larroze, E., Mir, S. and Galy, P. (2022) Design Methodology of a 28 nm FD-SOI Capacitive Feedback RF LNA Based on the ACM Model and Look-Up Tables. Solid-State Electronics, 194, Article ID: 1108340.
https://doi.org/10.1016/j.sse.2022.108340
[9]
Fesquet, L. (2000) Conception de circuits analogiques. INP Grenoble, Grenoble.
[10]
Razavi, B. (1998) RF Microelectronics. Prentice Hall, Hoboken.
[11]
Liu, W., Lei, H., Liu, H. and Jiang, P. (2022) Design of an Ultra-Wideband LNA Using Transformer Matching Method. Integration, 87, 122-136.
https://doi.org/10.1016/j.vlsi.2022.06.012
[12]
Hamidi, S.B. and Dawn, D. (2023) A Fully-Integrated Band-Switchable CMOS Low Noise Amplifier. 2023 IEEE Wireless and Microwave Technology Conference (WAMICON), Melbourne, 17-18 April 2023, 61-64.
https://doi.org/10.1109/WAMICON57636.2023.10124921
[13]
Jafari, B.M. and Shamsi, H. (2020) A Sub-1V Dual-Path Noise and Distortion Canceling CMOS LNA for Low Power Wireless Applications. Microelectronics Journal, 104, Article ID: 104903. https://doi.org/10.1016/j.mejo.2020.104903
[14]
Mudavath, M., Kishore, K.H., Hussain, A. and Boopathi, C. (2020) Design and Analysis of CMOS RF Receiver Front-End of LNA for Wireless Applications. Microprocessors and Microsystems, 75, Article ID: 102999.
https://doi.org/10.1016/j.micpro.2020.102999