Ultraviolet radiation by its wavelength is divided into: UVA, UVB and UVC. Only UVA and UVB manage to penetrate the ozone layer, but due to anthropological activities, all of them are capable of interacting with humans to a greater or lesser extent, and can generate adverse effects such as cellular stress when interacting with intra-and extracellular biomolecules. The skin is the first organ in contact with UV radiation, and the stress it generates can be analyzed by the expression of a bioindicator of cellular damage such as Hsp70. Therefore, the objective of the project was: to determine the effect of UVA, UVB and UVC radiation on HaCaT epithelial cells, by analyzing the expression of Hsp70. Materials and methods: HaCaT cells were cultured in vitro, which were irradiated with UVA, UVB and UVC light at different doses, to subsequently determine the degree of Hsp70 expression by Immunodetection by PAGE-SDS and Western Blot. Results: Basal expression of Hsp70 was observed in no irradiated HaCaT cells. When HaCaT cells were irradiated with UVA, UVB, UVC, an increase in this Hsp70 protein was observed. With UVA, a higher degree of expression was observed at a time of 30 minutes of irradiation. With UVB the highest expression shifted to a time of 20 minutes. With UVC, overexpression was observed after 10 minutes. Conclusion: UV radiation generates cellular stress on HaCaT cells, evaluated by the stress bioindicator Hsp70. According to the wavelength of UV radiation, those that have a shorter wavelength have a greater potential for cellular damage, such as UVC.
References
[1]
Fontal, B., Suárez, T., Reyes, M., Bellandi, F., Contreras, R. and Romero, I. (2005) El Espectro Electromagnético y sus Aplicaciones. Escuela Venezolana para la Enseñanza de la Química, Mérida. http://www.saber.ula.ve/bitstream/handle/123456789/16746/espectro_electromagnetico.pdf;jsessionid=90F5B26140D90B5FA57669E03EAB5FF2?sequence=1
[2]
Ordóñez, J.L. (2012) Espectro electromagnético y espectro radioeléctrico. Manual Formativo de ACTA, No. 62, 17-31.
[3]
Cortés Aguilera, A.J., Enciso Higueras, J., Reyes González, C.M., Arriaga Álvarez, E., Romero Melchor, C., Ribes Febles, J. and Hernández Casal, M. (2011) El índice ultravioleta en el ámbito laboral: Un instrumento educativo. Medicina y Seguridad del Trabajo, 57, 319-330. https://doi.org/10.4321/S0465-546X2011000400006
[4]
Meunier, L. (2023) Fotoinmunología: Efectos inmunológicos de la radiación ultravioleta e implicaciones en dermatología. EMC-Dermatología, 57, 1-10. https://doi.org/10.1016/S1761-2896(23)47539-5
[5]
González-Púmariega, M., Tamayo, M.V. and Sánchez-Lamar, Á. (2009) La radiación ultravioleta. Su efecto dañino y consecuencias para la salud humana. Theoria, 18, 69-80.
[6]
OMS (2003) Solar mundial: Guía práctica. Recomendación conjunta de: Organización Mundial de la Salud, Organización Meteorológica Mundial, Programa de las Naciones Unidas para el Medio Ambiente, Comisión Internacional de Protección contra la Radiación no Ionizante.
[7]
Hicks, J.J., Torres-Ramos, Y.D. and Sierra-Vargas, M.P. (2006) Oxidative Stress. Concept and Classification. Revista de Endocrinología y Nutrición, 14, 223-226.
[8]
Olarte Saucedo, M., Sánchez Rodríguez, S.H., Aréchiga Flores, C.F., Bañuelos Valenzuela, R. and López Luna, M.A. (2019) Efecto de la radiación ultravioleta (UV) en animales domésticos. Revisión. Revista mexicana de ciencias pecuarias, 10, 416-432. https://doi.org/10.22319/rmcp.v10i2.4648
[9]
Ross, M.H. and Pawlina, W. (2007) Histología: Texto y Atlas. 6a Ed. Médica Panamericana, Buenos Aires.
[10]
Curtis, H., Barnes, N.S., Schneck, A. and Massarini, A. (2015) Los tejidos, órganos y sistemas de los vertebrados. In: Curtis Biología, 7th Edition, Editorial Médica Panamericana, Buenos Aires, 598-601.
[11]
Saucedo, G.M.G., Vallejo, R.S. and Giménez, J.C.M. (2020) Efectos de la radiación solar y actualización en fotoprotección. Anales de Pediatría, 92, 377-e1. https://doi.org/10.1016/j.anpedi.2020.04.014
[12]
Cirilo, A.D., Llombart, C.M. and Tamargo, J.J. (2003) Introducción a la química terapéutica. 2a Ed. Ediciones Díaz de Santos, Madrid.
[13]
Rotelli, A.E., Guardia, T., Juárez, A.O., De la Rocha, N.E. and Pelzer, L.E. (2003) Comparative Study of Flavonoids in Experimental Models of Inflammation. Pharmacological Research, 48, 601-606. https://doi.org/10.1016/S1043-6618(03)00225-1
[14]
Aitken, G.R., Henderson, J.R., Chang, S.C., McNeil, C.J. and Birch-Machin, M.A. (2007) Direct Monitoring of UV-Induced Free Radical Generation in HaCaT Keratinocytes. Clinical and Experimental Dermatology, 32, 722-727. https://doi.org/10.1111/j.1365-2230.2007.02474.x
[15]
Hidalgo, M.á.G., Rubio, M.O. and Cruz, M.G. (2018) Estrés oxidativo y antioxidantes. Avances en Investigacion Agropecuaria, 22, 47-63.
[16]
Carvajal Carvajal, C. (2019) Especies reactivas del oxígeno: Formación, función y estrés oxidativo. Medicina Legal de Costa Rica, 36, 91-100.
[17]
Zhong, F., Xie, J., Zhang, D., Han, Y. and Wang, C. (2015) Polypeptide from Chlamys farreri Suppresses Ultraviolet-B Irradiation-Induced Apoptosis through Restoring ER Redox Homeostasis, Scavenging ROS Generation, and Suppressing the PERK-eIF2a-CHOP Pathway in HaCaT Cells. Journal of Photochemistry and Photobiology B: Biology, 151, 10-16. https://doi.org/10.1016/j.jphotobiol.2015.06.016
[18]
Morales, C. and López-Nevot, M.A. (2006) Efectos de la radiación ultravioleta (UV) en la inducción de mutaciones de p53 en tumores de piel. Oncología (Barcelona), 29, 25-32. https://doi.org/10.4321/S0378-48352006000700003
[19]
Beauchef, G., Favre-Mercuret, M., Blanc, B., Fitoussi, R., Vié, K. and Compagnone, N. (2021) Effect of Red Panax Ginseng on Mitochondrial Dynamics and Bioenergetics in Hacat Cells Exposed to Urban Pollutants. Journal of Cosmetics, Dermatological Sciences and Applications, 11, 84-95. https://doi.org/10.4236/jcdsa.2021.112009
[20]
Páez, L.C., Díaz, I.M., de Hoyo Lora, M. and Corrales, B.S. (2009) Proteínas de estrés: Respuestas y funciones de HSP70 en el músculo esquelético durante el ejercicio físico. Revista andaluza de Medicina del deporte, 2, 141-148.
[21]
Guerrero-Rojas, R. and Guerrero-Fonsecaz, C. (2018) Mecanismos moleculares de las proteínas de choque térmico (HSPs) implicados en el desarrollo neoplásico. Revista Salud Uninorte, 34, 455-474. https://doi.org/10.14482/sun.34.2.616.98
[22]
Coronato, S., Di Girolamo, W., Salas, M., Spinelli, O. and Laguens, G. (1999) Biología de las proteínas del shock térmico. Medicina (Buenos Aires), 59, 477-486.
[23]
Vega, M.V.S. (2008) La capa de ozono. Biocenosis, 21, 65-68.
[24]
Félix, C.S.C., Rodríguez, S.H.S., Ramírez-Alvarado, E.D. and Vásquez, G.E.B. (2006) El efecto estresante del tabaco, alcohol, sobrepeso y exceso de ejercicio físico, es manifestado a través de la expresión de la HSP70. Archivos de Medicina, 2, 1-14.
[25]
Wang, X., Jiang, Q., Wang, W., Su, L., Han, Y. and Wang, C. (2014) Molecular Mechanism of Polypeptides from Chlamys farreri (PCF)’s Anti-Apoptotic Effect in UVA-Exposed HaCaT Cells Involves HSF1/HSP70, JNK, XO, iNOS and NO/ROS. Journal of Photochemistry and Photobiology B: Biology, 130, 47-56. https://doi.org/10.1016/j.jphotobiol.2013.11.005
[26]
Hwang, H., Chun, H., Kim, D., Shin, M., Kim, Y.S., In, S. and Kang, N.G. (2021) Lysophosphatidylcholine Exerts an Anti-Skin Photoaging Effect via Heat Shock Protein 70 Induction. Journal of Cosmetic Dermatology, 20, 4060-4067. https://doi.org/10.1111/jocd.14068
[27]
Kang, R., Kroemer, G. and Tang, D. (2019) The Tumor Suppressor Protein p53 and the Ferroptosis Network. Free Radical Biology and Medicine, 133, 162-168. https://doi.org/10.1016/j.freeradbiomed.2018.05.074
[28]
Cuéllar Pérez, J. (2008) Caracterización estructural y funcional de la interacción entre las chaperonas CCT y Hsc70. Tesis Doctoral, Universidad Autónoma de Madrid, Madrid. http://hdl.handle.net/10486/2000
[29]
Brusa, D., Migliore, E., Garetto, S., Simone, M. and Matera, L. (2009) Immunogenicity of 56 C and UVC-Treated Prostate Cancer Is Associated with Release of HSP70 and HMGB1 from Necrotic Cells. The Prostate, 69, 1343-1352. https://doi.org/10.1002/pros.20981
[30]
Camargo, A.B. and Manucha, W. (2017) Potencial rol protector del óxido nítrico y Hsp70 asociado a alimentos funcionales en la aterosclerosis. Clínica e Investigación en Arteriosclerosis, 29, 36-45. https://doi.org/10.1016/j.arteri.2016.05.004
[31]
Letechipia, J.O., López, D.A.G., de León, C.L., Carrillo, H.R.V. and Rodríguez, S.H.S. (2019) Rayos X inducen cambios en la viabilidad celular: Expresión de Hsp70 y caspasa-8 en leucocitos humanos. Ingenierías, 22, 35.
[32]
Taghavizadeh Yazdi, M.E., Amiri, M.S., Nourbakhsh, F., Rahnama, M., Forouzanfar, F. and Mousavi, S.H. (2021) Bio-Indicators in Cadmium Toxicity: Role of HSP27 and HSP70. Environmental Science and Pollution Research, 28, 26359-26379. https://doi.org/10.1007/s11356-021-13687-y
[33]
Elmore, S. (2007) Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35, 495-516. https://doi.org/10.1080/01926230701320337
[34]
Takasawa, R., Nakamura, H., Mori, T. and Tanuma, S.I. (2005) Differential Apoptotic Pathways in Human Keratinocyte HaCaT Cells Exposed to UVB and UVC. Apoptosis, 10, 1121-1130. https://doi.org/10.1007/s10495-005-0901-8
[35]
Mata, J.L., Ramos, J.M., Armstrong, R.A. and D’Antoni, H. (2006) Niveles de luz ultravioleta ambiental asociados con apoptosis y necrosis en fibroblastos humanos. Acta bioquímica clínica latinoamericana, 40, 453-460.
[36]
Nagata, S. (2018) Apoptosis and Clearance of Apoptotic Cells. Annual Review of Immunology, 36, 489-517. https://doi.org/10.1146/annurev-immunol-042617-053010
[37]
Pyrshev, K.A., Klymchenko, A.S., Csúcs, G. and Demchenko, A.P. (2018) Apoptosis and Eryptosis: Striking Differences on Biomembrane Level. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1860, 1362-1371. https://doi.org/10.1016/j.bbamem.2018.03.019
[38]
Rámirez-Dávila, K.S. (2022) Efecto in Vitro de la luz UVC sobre la viabilidad, morfología, ADN y la expresión de proteínas Hsp70 y P53 en leucocitos humanos [Tesis para obtener el título de Licenciatura en biología, Universidad Autónoma de Zacatecas]. https://catalogo.uaz.edu.mx/cgi-bin/koha/opac-detail.pl?biblionumber=147270
[39]
Colombo, I., Sangiovanni, E., Maggio, R., Mattozzi, C., Zava, S., Corbett, Y. and Dell’Agli, M. (2017) HaCaT Cells as a Reliable in Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediators of Inflammation, 2017, Article ID: 7435621. https://doi.org/10.1155/2017/7435621
[40]
Yuspa, S.H., Hennings, H., Tucker, R.W., Jaken, S., Kilkenny, A.E. and Roop, D.R. (1988) Signal Transduction for Proliferation and Differentiation in Keratinocytes. Annals of the New York Academy of Sciences, 548, 191-196. https://doi.org/10.1111/j.1749-6632.1988.tb18806.x
[41]
Huseynova, F., Mammadov, A., Huseynova, I., Cuisinier, F. and Barragan-Montero, V. (2022) Insulin Effect on Gene Expression of Dental Pulp Cell during Osteodifferentiation. Journal of Biosciences and Medicines, 10, 99-107. https://doi.org/10.4236/jbm.2022.101009
[42]
Bradford, M.M. (1976) Un método rápido y sensible para la cuantificación de cantidades de microgramos de proteína utilizando el principio de unión de proteína-colorante. Bioquímica analítica, 72, 248-254.
[43]
Laemmli, U.K. (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0
[44]
Towbin, H., Staehelin, T. and Gordon, J. (1979) Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications. Proceedings of the National Academy of Sciences of the United States of America, 76, 4350-4354. https://doi.org/10.1073/pnas.76.9.4350
[45]
Cornejo, A., Serrato, A., Rendón, B. and Rocha, M.G. (2014) Herramientas moleculares aplicadas en ecología: Aspectos teóricos y prácticos. Instituto nacional de ecología y cambio climatic, Mexico, 27-50.
[46]
Wilson, V.G. (2014) Growth and Differentiation of HaCaT Keratinocytes. In: Turksen, K., Ed., Epidermal Cells: Methods and Protocols, Springer, Berlin, 33-41. https://doi.org/10.1007/7651_2013_42
[47]
Roh, B.H., Kim, D.H., Cho, M.K., Park, Y.L. and Whang, K.U. (2008) Expression of Heat Shock Protein 70 in Human Skin Cells as a Photoprotective Function after UV Exposure. Annals of Dermatology, 20, 184-189. https://doi.org/10.5021/ad.2008.20.4.184
[48]
Mayer, M.P. and Bukau, B. (2005) Hsp70 Chaperones: Cellular Functions and Molecular Mechanism. Cellular and Molecular Life Sciences, 62, 670-684. https://doi.org/10.1007/s00018-004-4464-6
[49]
Mayer, M.P. (2013) Hsp70 Chaperone Dynamics and Molecular Mechanism. Trends in Biochemical Sciences, 38, 507-514. https://doi.org/10.1016/j.tibs.2013.08.001
[50]
Multhoff, G., Pockley, A.G., Schmid, T.E. and Schilling, D. (2015) The Role of Heat Shock Protein 70 (Hsp70) in Radiation-Induced Immunomodulation. Cancer Letters, 368, 179-184. https://doi.org/10.1016/j.canlet.2015.02.013
[51]
Park, K.C., Kim, D.S., Choi, H.O., Kim, K.H., Chung, J.H., Eun, H.C. and Seo, J.S. (2000) Overexpression of HSP70 Prevents Ultraviolet B-Induced Apoptosis of a Human Melanoma Cell Line. Archives of Dermatological Research, 292, 482-487. https://doi.org/10.1007/s004030000173
[52]
Yoshihisa, Y., Hassan, M.A., Furusawa, Y., Tabuchi, Y., Kondo, T. and Shimizu, T. (2012) Alkannin, HSP70 Inducer, Protects against UVB-Induced Apoptosis in Human Keratinocytes. PLOS ONE, 7, e47903. https://doi.org/10.1371/journal.pone.0047903