|
Pure Mathematics 2023
非局部随机扩散方程解的H?lder连续性
|
Abstract:
本文的目标是获得非局部随机扩散方程解的H?lder连续性。利用Campanato估计和Sobolev嵌入定理,首先证明了非局部随机扩散方程的温和解的H?lder连续性,即解u属于空间Cβ(DT;Lp(Ω))。其次,通过使用尾估计,得到了Lp(Ω;Cβ*(DT)中的温和解的估计。
In this paper, we aim to obtain the H?lder continuous of solutions to nonlocal stochastic equations. By using Campanato estimates and Sobolev embedding theorem, we first prove the H?lder con-tinuous of the mild solution of nonlocalstochastic diffusion equations in the sense that the solution u belongs to the space Cβ(DT;Lp(Ω)). Then by using tail estimates, we obtain the estimates of the mild solution in Lp(Ω;Cβ*(DT).
[1] | Kim, I. (2015) A BMO Estimate for Stochastic Singular Integral Operators and Its Application to SPDEs. Journal of Functional Analysis, 269, 1289-1309. https://doi.org/10.1016/j.jfa.2015.05.015 |
[2] | Lv, G., Gao, H., Wei, J. and Wu, J.L. (2019) BMO and Morrey-Campanato Estimates for Stochastic Convolutions and Schauder Estimates for Sto-chastic Parabolic Equations. Differential Equations, 266, 2666-2717.
https://doi.org/10.1016/j.jde.2018.08.042 |
[3] | Krylov, N.V. (1999) An Analytic Approach to SPDEs. In: Sto-chastic Partial Differential Equations: Six Perspectives, Vol. 64, AMS, Providence, 185-242. https://doi.org/10.1090/surv/064/05 |
[4] | Krylov, N.V. (1996) On Lp-Theory of Stochastic Partial Differential Equations in the Whole Space. SIAM Journal on Mathematical Analysis, 27, 313-340. https://doi.org/10.1137/S0036141094263317 |
[5] | Kim, I. and Kim, K.H. (2016) An Lp-Theory for Stochastic Partial Differential Equations Driven by Lévy Processes with Pseudo-Differential Operators of Arbitrary Order. Sto-chastic Processes and their Applications, 126, 2761-2786.
https://doi.org/10.1016/j.spa.2016.03.001 |
[6] | Zhang, X. (2006) Lp-Theory of Semi-Linear SPDEs on General Measure Spaces and Applications. Journal of Functional Analysis, 239, 44-75. https://doi.org/10.1016/j.jfa.2006.01.014 |
[7] | Zhang, X. (2013) Lp-Maximal Regularity of Nonlocal Parabolic Equations and Applications. Annales de l’Institut Henri Poincaré C, 30, 573-614. https://doi.org/10.1016/j.anihpc.2012.10.006 |
[8] | Duncan, T.E., Pasik-Duncan, B. and Maslowski, B. (2002) Fractional Brownian Motion and Stochastic Equations in Hilbert Spaces. Stochastics and Dynamics, 2, 225-250. https://doi.org/10.1142/S0219493702000340 |
[9] | Comte, F. and Renault, E. (1996) Long Memory Continuous Time Models. Journal of Econometrics, 73, 101-149.
https://doi.org/10.1016/0304-4076(95)01735-6 |
[10] | Boufoussi, B. and Hajji, S. (2012) Neutral Stochastic Func-tional Differential Equations Driven by a Fractional Brownian Motion in a Hilbert Space. Statistics and Probability Letters, 82, 1549-1558.
https://doi.org/10.1016/j.spl.2012.04.013 |
[11] | Caraballo, T., Garrido-Atienza, M.J. and Taniguchi, T. (2011) The Existence and Exponential Behavior of Solutions to Stochastic Delay Evolution Equations with a Fractional Brownian Motion. Nonlinear Analysis: Theory, Methods and Applications, 74, 3671-3684. https://doi.org/10.1016/j.na.2011.02.047 |
[12] | Li, Z. and Yan, L. (2019) Ergodicity and Stationary Solution for Stochastic Neutral Retarded Partial Differential Equations Driven by Fractional Brownian Motion. Journal of Theoretical Probability, 32, 1399-1419.
https://doi.org/10.1007/s10959-018-0810-8 |
[13] | Xu, L., Li, Z. and Luo, J. (2017) Global Attracting Set and Ex-ponential Decay of Second-Order Neutral Stochastic Functional Differential Equations Driven by fBm. Advances in Difference Equations, 2017, Article No. 134.
https://doi.org/10.1186/s13662-017-1186-2 |
[14] | Hsu, E.P., Wang, Y. and Wang, Z. (2017) Stochastic De Giorgi Iteration and Regularity of Stochastic Partial Differential Equations. The Annals of Probability, 45, 2855-2866. https://doi.org/10.1214/16-AOP1126 |
[15] | Du, K. and Liu, J. (2016) A Schauder Estimate for Stochastic PDEs. Comptes Rendus Mathematique, 354, 371-375.
https://doi.org/10.1016/j.crma.2016.01.010 |
[16] | Debussche, A., De Moor, S. and Hofmanová, M. (2015) A Reg-ularity Result for Quasilinear Stochastic Partial Differential Equations of Parabolic Type. SIAM Journal on Mathematical Analysis, 47, 1590-1614.
https://doi.org/10.1137/130950549 |
[17] | Kuksin, S.B., Nadirashvili, N.S. and Piatnitski, A.L. (2003) H?lder Esti-mates for Solutions of Parabolic SPDEs. Theory of Probability and Its Applications, 47, 157-163. https://doi.org/10.1137/S0040585X97979524 |
[18] | Tian, R., Ding, L., Wei, J. and Zheng, S. (2019) H?lder Esti-mates of Mild Solutions for Nonlocal SPDEs. Advances in Difference Equations, 2019, Article No. 159. https://doi.org/10.1186/s13662-019-2097-1 |
[19] | Lv, G., Gao, H., Wei, J. and Wu, J.L. (2023) On the Campanato and H?lder Regularity of Local and Nonlocal Stochastic Diffusion Equations. Discrete and Continuous Dynamical Systems-B, 28, 1244.
https://doi.org/10.3934/dcdsb.2022119 |
[20] | Chen, Y.Z. (2003) Second Order Parabolic Partial Differential Equa-tions. Peking University Press, Beijing. |
[21] | Bogdan, K. and Jakubowski, T. (2007) Estimates of Heat Kernel of Frac-tional Laplacian Perturbed by Gradient Operators. Communications in Mathematical Physics, 271, 179-198. https://doi.org/10.1007/s00220-006-0178-y |
[22] | Bogdan, K., Stós, A. and Sztonyk, P. (2003) Harnack Inequality for Stable Processes on d-Sets. Studia Mathematica, 158, 163-198. https://doi.org/10.4064/sm158-2-5 |
[23] | Chen, Z.Q. and Hu, E. (2015) Heat Kernel Estimates for Δ+Δα/2 under Gradient Perturbation. Stochastic Processes and Their Applications, 125, 2603-2642. https://doi.org/10.1016/j.spa.2015.02.016 |
[24] | Imbert, C. (2005) A Non-Local Regularization of First Order Hamilton-Jacobi Equations. Journal of Differential Equations, 211, 218-246. https://doi.org/10.1016/j.jde.2004.06.001 |
[25] | Biagini, F., Hu, Y., Φksendal, B. and Zhang, T. (2008) Stochastic Calculus for Fractional Brownian Motion and Applications. Springer Science and Business Media, Berlin. https://doi.org/10.1007/978-1-84628-797-8 |