%0 Journal Article %T 非局部随机扩散方程解的H?lder连续性
H?lder Continuous of the Solutions to Nonlocal Stochastic Diffusion Equations %A 贾倩 %A 王伟 %J Pure Mathematics %P 3380-3394 %@ 2160-7605 %D 2023 %I Hans Publishing %R 10.12677/PM.2023.1312351 %X 本文的目标是获得非局部随机扩散方程解的H?lder连续性。利用Campanato估计和Sobolev嵌入定理,首先证明了非局部随机扩散方程的温和解的H?lder连续性,即解u属于空间Cβ(DT;Lp(Ω))。其次,通过使用尾估计,得到了Lp(Ω;Cβ*(DT)中的温和解的估计。
In this paper, we aim to obtain the H?lder continuous of solutions to nonlocal stochastic equations. By using Campanato estimates and Sobolev embedding theorem, we first prove the H?lder con-tinuous of the mild solution of nonlocalstochastic diffusion equations in the sense that the solution u belongs to the space Cβ(DT;Lp(Ω)). Then by using tail estimates, we obtain the estimates of the mild solution in Lp(Ω;Cβ*(DT). %K 分数布朗运动,H?lder连续性,L估计,尾估计
Fractional Brownian Motion %K H?lder Continuity %K L Estimates %K Tail Estimates %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=77505