%0 Journal Article
%T 非局部随机扩散方程解的H?lder连续性
H?lder Continuous of the Solutions to Nonlocal Stochastic Diffusion Equations
%A 贾倩
%A 王伟
%J Pure Mathematics
%P 3380-3394
%@ 2160-7605
%D 2023
%I Hans Publishing
%R 10.12677/PM.2023.1312351
%X 本文的目标是获得非局部随机扩散方程解的H?lder连续性。利用Campanato估计和Sobolev嵌入定理,首先证明了非局部随机扩散方程的温和解的H?lder连续性,即解u属于空间Cβ(DT;Lp(Ω))。其次,通过使用尾估计,得到了Lp(Ω;Cβ*(DT)中的温和解的估计。
In this paper, we aim to obtain the H?lder continuous of solutions to nonlocal stochastic equations. By using Campanato estimates and Sobolev embedding theorem, we first prove the H?lder con-tinuous of the mild solution of nonlocalstochastic diffusion equations in the sense that the solution u belongs to the space Cβ(DT;Lp(Ω)). Then by using tail estimates, we obtain the estimates of the mild solution in Lp(Ω;Cβ*(DT).
%K 分数布朗运动,H?lder连续性,L∞估计,尾估计
Fractional Brownian Motion
%K H?lder Continuity
%K L∞ Estimates
%K Tail Estimates
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=77505