全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

丢番图方程(75n)x+ (308n)y= (317n)z
On the Diophantine Equation (75n)x+ (308n)y= (317n)z

DOI: 10.12677/PM.2023.1311348, PP. 3358-3364

Keywords: Jesmanowicz猜想,丢番图方程,正整数解
Jesmanowicz’s Conjecture
, Diophantine Equation, Positive Integer Solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

设a,b,c是两两互素的正整数且a2+b2=c2。Jesmanowicz猜想:对于任意给定的正整数n,方程(an)x+(bn)y=(cn)z只有正整数解(x,y,z)=(2,2,2)。本文利用数论中的一些方法证明了:对任意的正整数n,方程(75n)x+ (308n)y= (317n)z只有正整数解(x,y,z)=(2,2,2),即当(a,b,c)=(75,308,317)时,Jesmanowicz猜想成立。
Let a,b,c be a primitive Pythagogrean triples such that a2+b2=c2. Jesmanowicz conjectured that, for any positive integer n, the Diophantine equation (an)x+(bn)y=(cn)z has only positive integer solution (x,y,z)=(2,2,2). In this paper, by using some methods of number theory,we prove that, for any positive integer n, the Diophantine equation (75n)x+ (308n)y= (317n)z has only positive integer solution (x,y,z)=(2,2,2), that is the Jesmanowicz conjecture is true, when (a,b,c)=(75,308,317).

References

[1]  Jesmanowicz, L. (1955-1956) Several Remarks on Pythagorean Numbers. Wiadom Mat., 1, 196-202.
[2]  Terai, N. (2014) On Jesmanowicz’ Conjecture Concerning Primitive Pythagorean Triples. Journal of Number Theory, 141, 316-323.
https://doi.org/10.1016/j.jnt.2014.02.009
[3]  李双志. 关于商高数的Jesmanowicz猜想[D]: [硕士学位论文]. 重庆: 西南大学, 2011.
[4]  Miyazaki, T. (2015) A Remark on Jesmanowicz’ Conjecture for Non-Coprimality Case. Acta Mathematica Sinica, English Series, 31, 1225-1260.
https://doi.org/10.1007/s10114-015-4491-2
[5]  陈凤娟. 关于丢番图方程 [J]. 数学进展, 2018, 47(3): 1-5.
[6]  Sun, C.F. and Cheng, Z. (2015) On Jesmanowicz’ Conjecture Concerning Pythagorean Triples. Journal of Mathematical Research with Applications, 35, 143-148.
[7]  闵嗣鹤, 严士健. 初等数论[M]. 北京: 高等教育出版社, 2003.
[8]  柯召, 孙琦. 数论讲义(上) [M]. 北京: 高等教育出版社, 1987.
[9]  邢静静. 关于商高数的Jesmanowicz猜想[D]: [硕士学位论文]. 重庆: 西南大学, 2015.
[10]  Deng, M.J. (2014) A Note on the Dionphantine Equation . Bulletin of the Australian Mathematical Society, 89, 316-321.
https://doi.org/10.1017/S000497271300066X

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133