|
Pure Mathematics 2023
丢番图方程(75n)x+ (308n)y= (317n)z
|
Abstract:
设a,b,c是两两互素的正整数且a2+b2=c2。Jesmanowicz猜想:对于任意给定的正整数n,方程(an)x+(bn)y=(cn)z只有正整数解(x,y,z)=(2,2,2)。本文利用数论中的一些方法证明了:对任意的正整数n,方程(75n)x+ (308n)y= (317n)z只有正整数解(x,y,z)=(2,2,2),即当(a,b,c)=(75,308,317)时,Jesmanowicz猜想成立。
Let a,b,c be a primitive Pythagogrean triples such that a2+b2=c2. Jesmanowicz conjectured that, for any positive integer n, the Diophantine equation (an)x+(bn)y=(cn)z has only positive integer solution (x,y,z)=(2,2,2). In this paper, by using some methods of number theory,we prove that, for any positive integer n, the Diophantine equation (75n)x+ (308n)y= (317n)z has only positive integer solution (x,y,z)=(2,2,2), that is the Jesmanowicz conjecture is true, when (a,b,c)=(75,308,317).
[1] | Jesmanowicz, L. (1955-1956) Several Remarks on Pythagorean Numbers. Wiadom Mat., 1, 196-202. |
[2] | Terai, N. (2014) On Jesmanowicz’ Conjecture Concerning Primitive Pythagorean Triples. Journal of Number Theory, 141, 316-323. https://doi.org/10.1016/j.jnt.2014.02.009 |
[3] | 李双志. 关于商高数的Jesmanowicz猜想[D]: [硕士学位论文]. 重庆: 西南大学, 2011. |
[4] | Miyazaki, T. (2015) A Remark on Jesmanowicz’ Conjecture for Non-Coprimality Case. Acta Mathematica Sinica, English Series, 31, 1225-1260. https://doi.org/10.1007/s10114-015-4491-2 |
[5] | 陈凤娟. 关于丢番图方程 [J]. 数学进展, 2018, 47(3): 1-5. |
[6] | Sun, C.F. and Cheng, Z. (2015) On Jesmanowicz’ Conjecture Concerning Pythagorean Triples. Journal of Mathematical Research with Applications, 35, 143-148. |
[7] | 闵嗣鹤, 严士健. 初等数论[M]. 北京: 高等教育出版社, 2003. |
[8] | 柯召, 孙琦. 数论讲义(上) [M]. 北京: 高等教育出版社, 1987. |
[9] | 邢静静. 关于商高数的Jesmanowicz猜想[D]: [硕士学位论文]. 重庆: 西南大学, 2015. |
[10] | Deng, M.J. (2014) A Note on the Dionphantine Equation . Bulletin of the Australian Mathematical Society, 89, 316-321. https://doi.org/10.1017/S000497271300066X |