%0 Journal Article
%T 丢番图方程(75n)x+ (308n)y= (317n)z
On the Diophantine Equation (75n)x+ (308n)y= (317n)z
%A 黄日娣
%A 邓乃娟
%J Pure Mathematics
%P 3358-3364
%@ 2160-7605
%D 2023
%I Hans Publishing
%R 10.12677/PM.2023.1311348
%X 设a,b,c是两两互素的正整数且a2+b2=c2。Jesmanowicz猜想:对于任意给定的正整数n,方程(an)x+(bn)y=(cn)z只有正整数解(x,y,z)=(2,2,2)。本文利用数论中的一些方法证明了:对任意的正整数n,方程(75n)x+ (308n)y= (317n)z只有正整数解(x,y,z)=(2,2,2),即当(a,b,c)=(75,308,317)时,Jesmanowicz猜想成立。
Let a,b,c be a primitive Pythagogrean triples such that a2+b2=c2. Jesmanowicz conjectured that, for any positive integer n, the Diophantine equation (an)x+(bn)y=(cn)z has only positive integer solution (x,y,z)=(2,2,2). In this paper, by using some methods of number theory,we prove that, for any positive integer n, the Diophantine equation (75n)x+ (308n)y= (317n)z has only positive integer solution (x,y,z)=(2,2,2), that is the Jesmanowicz conjecture is true, when (a,b,c)=(75,308,317).
%K Jesmanowicz猜想,丢番图方程,正整数解
Jesmanowicz’s Conjecture
%K Diophantine Equation
%K Positive Integer Solution
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=76431