|
Pure Mathematics 2023
超球面上多元Lagrange插值问题研究
|
Abstract:
以三元函数Lagrange插值研究结果为基础,对n元函数Lagrange插值结点组的适定性问题进行了研究。提出了超球面上的Lagrange插值适定结点组的基本概念,研究了超球面上的Lagrange插值适定结点组的某些基本理论和拓扑结构,得到了构造超球面上的Lagrange插值适定结点组的添加超平面法。这些方法都是以迭加方式完成的,因此便于在计算机上实现其构造过程。最后给出了具体实验算例。
Based on the research results of three-variable Lagrange interpolation, an investigation into the suitability of node sets for n-variable Lagrange interpolation was conducted. The fundamental concept of well-suited node sets for Lagrange interpolation on hyperspheres was proposed. Certain fundamental theories and topological structures of well-suited node sets for Lagrange interpolation on hyperspheres were studied, leading to the development of the method of adding hyperplanes for constructing well-suited node sets for Lagrange interpolation on hyperspheres. These methods are accomplished in an iterative manner, making them suitable for implementation on a computer. Finally, specific experimental examples are provided.
[1] | Liang, X.Z., Feng, R.Z. and Cui, L.H. (2000) Lagrange Interpolation on a Sphere. Northeastern Mathematical Journal, No. 2, 243-252. |
[2] | 崔利宏, 姜莹莹, 王星, 等. 球面上Lagrange插值问题研究[J]. 辽宁师范大学学报(自然科学版), 2011, 34(4): 416-418. |
[3] | 梁学章, 张明, 张洁琳, 等. 高维空间中代数流形上多项式空间的维数与Lagrange插值适定结点组的构造[J]. 吉林大学学报(理学版), 2006(3): 309-317. |
[4] | 许艳, 郭清伟. 超球面上的切触有理插值[J]. 大学数学, 2015, 31(2): 5-9. |
[5] | 李天平, 席小忠. N维欧氏空间上2次n ? 1维流形及性质[J]. 赣南师范学院学报, 2000(3): 12-14. |
[6] | 梁学章. 二元插值的适定结点组与迭加插值法[J]. 吉林大学自然科学学报, 1979(1): 27-32. |