%0 Journal Article %T 超球面上多元Lagrange插值问题研究
Research on Multivariate Lagrange Interpolation Problems on Hyperspheres %A 王心蕊 %A 马亚茹 %A 崔利宏 %J Pure Mathematics %P 3246-3253 %@ 2160-7605 %D 2023 %I Hans Publishing %R 10.12677/PM.2023.1311338 %X 以三元函数Lagrange插值研究结果为基础,对n元函数Lagrange插值结点组的适定性问题进行了研究。提出了超球面上的Lagrange插值适定结点组的基本概念,研究了超球面上的Lagrange插值适定结点组的某些基本理论和拓扑结构,得到了构造超球面上的Lagrange插值适定结点组的添加超平面法。这些方法都是以迭加方式完成的,因此便于在计算机上实现其构造过程。最后给出了具体实验算例。
Based on the research results of three-variable Lagrange interpolation, an investigation into the suitability of node sets for n-variable Lagrange interpolation was conducted. The fundamental concept of well-suited node sets for Lagrange interpolation on hyperspheres was proposed. Certain fundamental theories and topological structures of well-suited node sets for Lagrange interpolation on hyperspheres were studied, leading to the development of the method of adding hyperplanes for constructing well-suited node sets for Lagrange interpolation on hyperspheres. These methods are accomplished in an iterative manner, making them suitable for implementation on a computer. Finally, specific experimental examples are provided. %K 多元Lagrange插值,唯一可解结点组,超球面,迭加插值法
Multivariate Lagrange Interpolation %K The Only Solution Node Group %K Hypersphere %K Superposition Interpolation Method %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=76233