|
Pure Mathematics 2023
有界无穷维Hamilton算子的数值半径上下界估计
|
Abstract:
本文研究了有界无穷维Hamilton算子的数值半径不等式问题,利用数值半径的酉相似不变性得到了有界无穷维Hamilton算子的数值半径上下界的估计式,为刻画有界无穷维Hamilton算子谱的分布问题奠定了理论基础。
In this paper, Numerical Radius Inequalities of bounded infinite dimensional Hamiltonian operator are studied. By applying unitary similarity invariance of numerical radius, the numerical radius upper and lower estimations of bounded infinite dimensional Hamiltonian operator are obtained, and which provides a theoretical foundation for characterizing the spectra of bounded infinite dimensional Hamiltonian operator.
[1] | 钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995. |
[2] | Azizov, T.Ya., Dijksma, A. and Ggridneva, I.V. (2002) On the Boundness of Hamiltonian Operators. Proceedings American Mathematical Society, 131, 563-576. https://doi.org/10.1090/S0002-9939-02-06565-6 |
[3] | Kurina, G.A. (2001) Invertibility of Nonnegatively Hamiltonian Operators in a Hilbert Space. Differential Equations, 37, 880-882. https://doi.org/10.1023/A:1019259107760 |
[4] | Langer, H., Ran, A.C.M. and van de Rotten, B.A. (2001) Invariant Subspaces of Infinite Dimensional Hamiltonians and Solutions of the Corresponding Riccati Equations. Operator Theory: Advances and Applications, 130, 235-254.
https://doi.org/10.1007/978-3-0348-8181-4_18 |
[5] | Wyss, C. (2012) Hamiltonians with Riesz Bases of General-ised Eigenvectors and Riccati Equations. Eprint Arxiv, 60, 1723-1766. https://doi.org/10.1512/iumj.2011.60.4407 |
[6] | 吴德玉, 阿拉坦仓, 黄俊杰, 海国君. Hilbert空间中线性算子数值域及其应用[M]. 北京: 科学出版社, 2018. |