%0 Journal Article %T 有界无穷维Hamilton算子的数值半径上下界估计
Upper and Lower Bounds Estimation of Numerical Radius of Bounded Infinite-Dimensional Hamilton Operator %A 阿如汉 %A 耿真 %A 李健龙 %A 田孟森 %A 吴德玉 %J Pure Mathematics %P 3204-3209 %@ 2160-7605 %D 2023 %I Hans Publishing %R 10.12677/PM.2023.1311333 %X 本文研究了有界无穷维Hamilton算子的数值半径不等式问题,利用数值半径的酉相似不变性得到了有界无穷维Hamilton算子的数值半径上下界的估计式,为刻画有界无穷维Hamilton算子谱的分布问题奠定了理论基础。
In this paper, Numerical Radius Inequalities of bounded infinite dimensional Hamiltonian operator are studied. By applying unitary similarity invariance of numerical radius, the numerical radius upper and lower estimations of bounded infinite dimensional Hamiltonian operator are obtained, and which provides a theoretical foundation for characterizing the spectra of bounded infinite dimensional Hamiltonian operator. %K 数值半径,有界Hamilton算子,Hilbert空间
Numerical Radius %K Bounded Hamiltonian Operator %K Hilbert Space %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=75629