全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类趋化消耗模型解的整体有界性
Global Boundedness of Solution to a Chemotaxis-Consumption Model

DOI: 10.12677/PM.2023.1311325, PP. 3139-3145

Keywords: 趋化消耗,次线性敏感,Logistic源,整体有界性
Chemotaxis-Consumption
, Sublinear Sensitivity, Logistic Source, Global Boundedness

Full-Text   Cite this paper   Add to My Lib

Abstract:

趋化描述了生物有机体受化学信号刺激所产生的偏向性运动,它在生物学、化学、医学等学科领域有着广泛的应用。本文研究齐次Neumann边界条件下的具次线性敏感及带logistic源的趋化消耗模型:\"\",其中μ,χ > 0,r∈?,α∈(0,1)和k > 1。在一维情形下,模型存在整体有界的古典解。
Chemotaxis describes the biased movement of biological organisms stimulated by chemical signals. It is widely used in biology, chemistry, medicine and other fields. In this paper, a sublinear sensitive chemotactic-consumption model with logistic source under homogeneous Neumann boundary conditions is studied:\"\", where μ,χ > 0, r∈?, α∈(0,1) and k > 1. In the one-dimensional case, the model has a globally bounded classical solution.

References

[1]  Wang, L., Khan, U.D. and Khan, U.D. (2013) Boundedness in a Chemotaxis System with Consumption of Chemoattractant and Logistic Source. Electronic Journal of Differential Equations, 2013, 172-203.
[2]  Lankeit, J. and Wang, Y. (2017) Global Existence, Boundedness and Stabilization in a High-Dimensional Chemotaxis System with Consumption. Discrete & Continuous Dynamical Systems, 37, 6099-6121.
https://doi.org/10.3934/dcds.2017262
[3]  Wang, W. (2019) The Logistic Chemotaxis System with Singular Sensitivity and Signal Absorption in Dimension Two. Nonlinear Analysis: Real World Applications, 50, 532-561.
https://doi.org/10.1016/j.nonrwa.2019.06.001
[4]  Lankeit, E. and Lankeit, J. (2019) Classical Solutions to a Lo-gistic Chemotaxis Model with Singular Sensitivity and Signal Absorption. Nonlinear Analysis: Real World Applications, 46, 421-445.
https://doi.org/10.1016/j.nonrwa.2018.09.012
[5]  Winkler, M. (2022) Approaching Logarithmic Singularities in Quasilinear Chemotaxis-Consumption Systems with Signal-Dependent Sensitivities. Discrete and Continuous Dynam-ical Systems-B, 27, 6565-6587.
https://doi.org/10.3934/dcdsb.2022009
[6]  Winkler, M. (2010) Aggregation vs. Global Diffusive Behavior in the Higher-Dimensional Keller-Segel Model. Journal of Differential Equations, 248, 2889-2905.
https://doi.org/10.1016/j.jde.2010.02.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133