%0 Journal Article
%T 一类趋化消耗模型解的整体有界性
Global Boundedness of Solution to a Chemotaxis-Consumption Model
%A 陈越
%A 牛聪
%J Pure Mathematics
%P 3139-3145
%@ 2160-7605
%D 2023
%I Hans Publishing
%R 10.12677/PM.2023.1311325
%X 趋化描述了生物有机体受化学信号刺激所产生的偏向性运动,它在生物学、化学、医学等学科领域有着广泛的应用。本文研究齐次Neumann边界条件下的具次线性敏感及带logistic源的趋化消耗模型:
,其中μ,χ > 0,r∈?,α∈(0,1)和k > 1。在一维情形下,模型存在整体有界的古典解。
Chemotaxis describes the biased movement of biological organisms stimulated by chemical signals. It is widely used in biology, chemistry, medicine and other fields. In this paper, a sublinear sensitive chemotactic-consumption model with logistic source under homogeneous Neumann boundary conditions is studied:
, where μ,χ > 0, r∈?, α∈(0,1) and k > 1. In the one-dimensional case, the model has a globally bounded classical solution.
%K 趋化消耗,次线性敏感,Logistic源,整体有界性
Chemotaxis-Consumption
%K Sublinear Sensitivity
%K Logistic Source
%K Global Boundedness
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=75291