Ionizing radiations are tools in diagnosis and treatment of diseases. Leukopenia from exposure to ionizing radiation has been reported. Due to their radiosensitivity, leukocytes are a biological model to analyze cell damage. Therefore, cell viability, DNA damage, and Hsp70 and p53 expression in human leukocytes exposed to low-dose gamma radiation fields from a 137Cs source were evaluated. A decrease in cell viability, DNA damage and an increase in the expression of Hsp70 and p53 proportional to the radiation dose received was found, which was 0.2, 0.4, 0.6, 0.8 and 1.0 mGy.
References
[1]
Moroni, M., Maeda, D., Whitnall, M.H., Bonner, W.M. and Redon, C.E. (2013) Evaluation of the Gamma-H2AX Assay for Radiation Riodosimetry in a Swine Model. International Journal of Molecular Sciences, 14, 1411-1413.
https://doi.org/10.3390/ijms140714119
[2]
Morgan, W.F. and Bair, W.J. (2013) Issues in Low Dose Radiation Biology: The Controversy Continues. A Perspective. Radiation Research, 179, 501-510.
https://doi.org/10.1667/RR3306.1
[3]
Ghazy, A.A., Abu El-Nazar, S.Y., Ghoneim, H.E., Taha, A.R.M. and Abouelella, A.M. (2015) Effect of Murine Exposure to γ Rays on the Interplay between Th1 and Th2 Lymphocytes. Frontiers in Pharmacology, 6, Article 134469.
https://doi.org/10.3389/fphar.2015.00074
[4]
Bolus, N.E. (2017) Basic Review of Radiation Biology and Terminology. Journal of Nuclear Medicine Technology, 45, 259-264.
https://doi.org/10.2967/jnmt.117.195230
[5]
Sih, B.T., Alqasim, A.M.Z. and Ajil, A.H. (2017) The Effect of γ Ray on Total Leukocytes, Lymphocytes and Neutrophils on Blood Samples of Smokers Compared to Non-Smoker Donors. Iraqi Journal of Hematology, 6, 1-5.
https://doi.org/10.4103/ijh.ijh_1_17
[6]
Mehta, S.R., Suhag, V., Semwal, M. and Sharma, N. (2010) Radiotherapy: Basic Concepts and Recent Advances. Medical Journal Armed Forces India, 66, 158-162.
https://doi.org/10.1016/S0377-1237(10)80132-7
[7]
L’Annunziata, M.F. (2007) 3-γ- and X-Radiation—Photons. In: L’Annunziata, M.F., Ed., Radioactivity: Introduction and History, Elsevier Science, Amsterdam, 187-215.
https://doi.org/10.1016/B978-044452715-8.50006-2
[8]
J-Bront, F., Mairal, L. and Feld, D. (2011) Valoración Radiobiológica de Tratamientos Radiantes Mediante el Programa Albireo Target. Universidad Nacional de Cuyo, 34, 56-89.
[9]
Manti, L. and D’Arco, A. (2010) Cooperative Biological Effects between Ionizing Radiation and Other Physical and Chemical Agents. Mutation Research/Reviews in Mutation Research, 704, 115-122. https://doi.org/10.1016/j.mrrev.2010.03.005
[10]
El-Shanshoury, H., El-Shanshoury, G. and Abaza, A. (2016) Evaluation of Low Dose Ionizing Radiation Effect on Some Blood Components in Animal Model. Journal of Radiation Research and Applied Sciences, 9, 282-293.
https://doi.org/10.1016/j.jrras.2016.01.001
[11]
Saini, D., Shelke, S., Mani Vannan, A., Toprani, S., Jain, V., Das, B. and Seshadri, M. (2012) Transcription Profile of DNA Damage Response Genes at G0 Lymphocytes Exposed to γ Radiation. Molecular and Cellular Biochemistry, 364, 271-281.
https://doi.org/10.1007/s11010-012-1227-9
[12]
Davudian Talab, A., Farzanegan, Z. and Mahmoudi, F. (2018) Effects of Occupational Exposure on Blood Cells of Radiographers Working in Diagnostic Radiology Department of Khuzestan Province. Iranian Journal of Medical Physics, 15, 66-70.
[13]
Manda, K., Glasow, A., Paape, D. and Hildebrandt, G. (2012) Effects of Ionizing Radiation on the Immune System with Special Emphasis on the Interaction of Dendritic and T Cells. Frontiers in Oncology, 2, Article 102.
https://doi.org/10.3389/fonc.2012.00102
[14]
Squillaro, T., Galano, G., De Rosa, R., Peluso, G. and Galderisi, U. (2018) Concise Review: The Effect of Low-Dose Ionizing Radiation on Stem Cell Biology: A Contribution to Radiation Risk. Stem Cells, 36, 1146-1153.
https://doi.org/10.1002/stem.2836
[15]
Kirsch, D.G., Diehn, M., Kesarwala, A.H., Maity, A., Morgan, M.A., Schwarz, J.K. and Bernhard, E.J. (2018) The Future of Radiobiology. Journal of the National Cancer Institute, 110, 329-340. https://doi.org/10.1093/jnci/djx231
[16]
Voos, P., Fuck, S., Weipert, F., Babel, L., Tandl, D., Meckel, T., Hehlgans, S., Fournier, C., Moroni, A., Rödel, F. and Thiel, G. (2018) Ionizing Radiation Induces Morphological Changes and Immunological Modulation of Jurkat Cells. Frontiers in Immunology, 9, Article 922. https://doi.org/10.3389/fimmu.2018.00922
[17]
Helm, J.S. and Rudel, R.A. (2020) Adverse Outcome Pathways for Ionizing Radiation and Breast Cancer Involve Direct and Indirect DNA Damage, Oxidative Stress, Inflammation, Genomic Instability, and Interaction with Hormonal Regulation of the Breast. Archives of Toxicology, 94, 1511-1549.
https://doi.org/10.1007/s00204-020-02752-z
[18]
Vignard, J., Mirey, G. and Salles, B. (2013) Ionizing-Radiation Induced DNA Double-Strand Breaks: A Direct and Indirect Lighting Up. Radiotherapy and Oncology, 108, 362-369. https://doi.org/10.1016/j.radonc.2013.06.013
[19]
Wang, J., Yin, L., Zhang, J., Zhang, Y., Zhang, X., Ding, D., Gao, Y., Li, Q. and Chen, H. (2016) The Profiles of γ-H2AX along with ATM/DNA-PKcs Activation in the Lymphocytes and Granulocytes of Rat and Human Blood Exposed to γ Rays. Radiation and Environmental Biophysics, 55, 359-370.
https://doi.org/10.1007/s00411-016-0653-6
[20]
Bolus, N.E. (2001) Basic Review of Radiation Biology and Terminology. Journal of Nuclear Medicine Technology, 29, 67-73.
Barry, J.T., Berg, D.J. and Tyler, D.R. (2017) Radical Cage Effects: The Prediction of Radical Cage Pair Recombination Efficiencies Using Microviscosity across a Range of Solvent Types. Journal of the American Chemical Society, 139, 14399-14405.
https://doi.org/10.1021/jacs.7b04499
[23]
Byakov, V. and Stepanov, S. (2007) The Mechanism for the Primary Biological Effects of Ionizing Radiation. Physics-Uspekhi, 49, 469.
https://doi.org/10.1070/PU2006v049n05ABEH005783
[24]
Kessel, D. (2019) Apoptosis, Paraptosis and Autophagy: Death and Survival Pathways Associated with Photodynamic Therapy. Photochemistry and Photobiology, 95, 119-125. https://doi.org/10.1111/php.12952
[25]
Vega, H.R., Banuelos, R., Manzanares, E. and Sanchez, S.H. (2001) Response of Human Lymphocytes to Low γ Ray Doses. ALASBIMN Journal, 3, 9.
[26]
Jonak, C., Klosner, G. and Trautinger, F. (2006) Heat Shock Proteins in the Skin. International Journal of Cosmetic Science, 28, 233-241.
https://doi.org/10.1111/j.1467-2494.2006.00327.x
[27]
Roh, B.H., Kim, D.H., Cho, M.K., Park, Y.L. and Whang, K.U. (2008) Expression of Heat Shock Protein 70 in Human Skin Cells as a Photoprotective Function after UV Exposure. Annals of Dermatology, 20, 184-189.
https://doi.org/10.5021/ad.2008.20.4.184
[28]
Carrasco, L., Martínez, I.C., de Hoyo, M. and Sañudo, B. (2009) Proteínas de Estrés: Respuestas y Funciones de Hsp70 en el Músculo Esquelético Durante el Ejercicio Físico. Revista Andaluza de Medicina del Deporte, 2, 141-148.
[29]
Ortiz, J., Letechipía, C., Vega, H.R., García D.A. and Sanchez S.H. (2023) Apoptosis and Cellular Stress Induction in Human Leukocytes by Dental X-Rays. Radiation Physics and Chemistry, 204, Article ID: 110650.
https://doi.org/10.1016/j.radphyschem.2022.110650
[30]
Balogi, Z., Multhoff, G., Jensen, T.K., Lloyd-Evans, E., Yamashima, T., Jäättelä, M., Harwood, J.L. and Vígh, L. (2019) Hsp70 Interactions with Membrane Lipids Regulate Cellular Functions in Health and Disease. Progress in Lipid Research, 74, 18-30.
https://doi.org/10.1016/j.plipres.2019.01.004
[31]
Xie, K. and Huang, S. (2003) Regulation of Cancer Metastasis by Stress Pathways. Clinical & Experimental Metastasis, 20, 31-43.
https://doi.org/10.1023/A:1022590402748
[32]
Kumar, S., Stokes, J., Singh, U.P., Scissum, K., Acharya, A., Manne, U. and Mishra, M. (2016) Targeting Hsp70: A Possible Therapy for Cancer. Cancer Letters, 374, 156-166. https://doi.org/10.1016/j.canlet.2016.01.056
[33]
Lane, D.P. and Crawford, L.V. (1979) T Antigen Is Bound to a Host Protein in SY40 Transformed Cells. Nature, 278, 261-263. https://doi.org/10.1038/278261a0
[34]
Franco, L. (2007) ¿Por Qué Proliferan las Células? Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, 101, 111-126.
[35]
Eriksson, D. and Stigbrand, T. (2010) Radiation-Induced Cell Death Mechanisms. Tumor Biology, 31, 363-372. https://doi.org/10.1007/s13277-010-0042-8
[36]
Chen, J. (2016) The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harbor Perspectives in Medicine, 6, 101-104.
https://doi.org/10.1101/cshperspect.a026104
[37]
Lee, C.L., Blum, J.M. and Kirsch, G.D. (2013) Role of p53 in Regulating Tissue Response to Radiation by Mechanisms Independent of Apoptosis. Translational Cancer Research, 2, 412-421. https://doi.org/10.2147/JHC.S282062
[38]
De, B., Ng, S.P., Liu, A.Y., Avila, S., Tao, R., Holliday, E.B., Brownlee, Z., Kaseb, A., Lee, S., Raghav, K., Vauthey, J.N., Minsky, B.D., Herman, J.M., Das, P., Smith, G.L., Taniguchi, C.M., Krishnan, S., Cirane, C.H., Grassberger, C., Hong, T.S., Lin, S.H., Koong, A.C., Mohan, R. and Koay, E.J. (2021) Radiation-Associated Lymphopenia and Outcomes of Patients with Unresectable Hepatocellular Carcinoma Treated with Radiotherapy. Journal of Hepatocellular Carcinoma, 8, 57-69.
https://doi.org/10.1007/s00411-021-00911-z
[39]
Ebrahimiyan, S., Montazerabadi, A., Masoumi, H. and Keshtkar, M. (2021) Assessment of Some Factors of Cellular and Humoral Immunity in Radiology Workers. Radiation and Environmental Biophysics, 60, 501-505.
[40]
Standard Operating Procedures (SOPs) (2013) Conteo Celular y Evaluación de Viabilidad. Protocolos Cell Counts SPA.
[41]
Singh, N., McCoy, M., Tice, R. and Schneider, E. (1988) A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells. Experimental Cell Research, 175, 184-191. https://doi.org/10.1016/0014-4827(88)90265-0
[42]
Arencibia, D., Laurencio, A. and Fernández, L. (2012) Evaluación Preclínica del Extracto Oleoso de la Semilla de Carapa Guianensis Aublet Como Suplemento Nutricional Antioxidante. Revista cubana de farmacia, 47, 363-471.
[43]
Gaete, H., Guerra, R., Carvajal, D., Mukarker, M. and Lobos, G. (2014) Evaluación de la Genotoxicidad de las Aguas Costeras de Chile Central Sobre los Peces Mugil Cephalus y Odontesthes brevianalis. Hidrobiológica, 24, 271-279.
[44]
Changizi, V., Bahrami, M., Esfahani, M. and Shetab-Boushehri, S.V. (2017) Prevention of γ-Radiation-Induced DNA Damage in Human Lymphocytes Using a Serine Magnesium Sulfate Mixture. Sultan Qaboos University Medical Journal, 17, 162-167.
https://doi.org/10.18295/squmj.2016.17.02.005
[45]
Almeida, E., Fuentes, J.L., Sánchez, á., Carro, S. and Prieto, E. (2004) Efecto de la Radiación Gamma Sobre la Supervivencia y la Inducción de la Respuesta SOS en Células de Escherichia Coli Deficientes en la Reparación por Escisión de Nucleótidos y por Recombinación. Revista Cubana de Investigaciones Biomédicas, 23, 242-248.
[46]
Belyaev, I.Y., Eriksson, S., Nygren, J., Torudd, J. and Harms-Ringdahl, M. (1999) Effects of Ethidium Bromide on DNA Loop Organisation in Human Lymphocytes Measured by Anomalous Viscosity Time Dependence and Single Cell Gel Electrophoresis. Biochimica et Biophysica Acta, 1428, 348-356.
https://doi.org/10.1016/S0304-4165(99)00076-8
[47]
Tice, R.R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J.C. and Sasaki, Y.F. (2000) Single Cell Gel Comet Assay: Guidelines for In-Vitro and In-Vivo Genetic Toxicology Testing. Environmental and Molecular Mutagenesis, 35, 206-221.
https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J
[48]
Nandhakumar, S., Parasuraman, S., Shanmugam, M.M., Rao, K.R., Chand, P. and Bhat, B.V. (2011) Evaluation of DNA Damage Using Single-Cell Gel Electrophoresis (Comet Assay). Journal of Pharmacology & Pharmacotherapeutics, 2, 107-111.
https://doi.org/10.4103/0976-500X.81903
[49]
Ribas-Maynou, J., Gawecka, J.E., Benet, J. and Ward, W.S. (2014) Double-Stranded DNA Breaks Hidden in the Neutral Comet Assay Suggest a Role of the Sperm Nuclear Matrix in DNA Integrity Maintenance. Molecular Human Reproduction, 20, 330-340. https://doi.org/10.1093/molehr/gat090
[50]
Møller, P., Azqueta, A., Boutet-Robinet, E., Koppen, G., Bonassi, S., Milić, M. and Langie, S.A. (2020) Minimum Information for Reporting on the Comet Assay (MIRCA): Recommendations for Describing Comet Assay Procedures and Results. Nature Protocols, 15, 3817-3826. https://doi.org/10.1038/s41596-020-0398-1
[51]
Andreassi, M.G. (2004) The Biological Effects of Diagnostic Cardiac Imaging on Chronically Exposed Physicians: The Importance of Being Non-Ionizing. Cardiovascular Ultrasound, 2, Article No. 25. https://doi.org/10.1186/1476-7120-2-25
[52]
Olive, P.L. (1998) The Role of DNA Single- and Double-Strand Breaks in Cell Killing by Ionizing Radiation. Radiation Research, 150, S42-S51.
https://doi.org/10.2307/3579807
[53]
Kuefner, M.A., Brand, M., Engert, C., Schwab, S.A. and Uder, M. (2015) Radiation Induced DNA Double-Strand Breaks in Radiology. RöFo, 187, 872-878.
https://doi.org/10.1055/s-0035-1553209
[54]
Shetty, V., Shetty, N.J., Ananthanarayana, S.R., Jha, S.K. and Chaubey, R.C. (2017) Evaluation of γ Radiation-Induced DNA Damage in Aedes aegypti Using the Comet Assay. Toxicology and Industrial Health, 33, 930-937.
https://doi.org/10.1177/0748233717733599
[55]
Chaubey, R.C., Bhilwade, H.N., Sonawane, V., Rajagopalan, R., Joshi. N. and Mishra, K.P. (2004) Use of in-House Developed Imaging Software SCGE-Pro for Comet Assay to Quantify DNA Strand Breaks in Mouse Leukocytes. Radiation Biology and Health Sciences Division.
[56]
Chatterjee, S. and Burns, T.F. (2017) Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. International Journal of Molecular Sciences, 18, Article 1978. https://doi.org/10.3390/ijms18091978
[57]
Tang, Y., Pan, A., Liu, Y. and Yin, L. (2021) The Diagnostic Value of Urine Heat Shock Protein 70 and Prostatic Exosomal Protein in Chronic Prostatitis. Journal of Clinical Laboratory Analysis, 35, e23778. https://doi.org/10.1002/jcla.23778
[58]
Mayer, M.P. (2013) Hsp70 Chaperone Dynamics and Molecular Mechanism. Trends in Biochemical Sciences, 38, 507-514.
https://doi.org/10.1016/j.tibs.2013.08.001
[59]
Shevtsov, M., Huile, G. and Multhoff, G. (2018) Membrane Heat Shock Protein 70: A Theranostic Target for Cancer Therapy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373, Article ID: 20160526.
https://doi.org/10.1098/rstb.2016.0526
[60]
Calini, V., Urani, C. and Camatini, M. (2003) Overexpression of Hsp70 Is Induced by Ionizing Radiation in C3H 10T1/2 Cells and Protects from DNA Damage. Toxicology in vitro, 17, 561-566. https://doi.org/10.1016/S0887-2333(03)00116-4
[61]
Datkhile, K.D., Mukhopadhyaya, R., Dongre, T.K. and Nath, B.B. (2011) Hsp70 Expression in Chironomus ramosus Exposed to γ Radiation. International Journal of Radiation Biology, 87, 213-221. https://doi.org/10.3109/09553002.2010.518215
[62]
Nishad, S. and Ghosh, A. (2018) Comparative Proteomic Analysis of Human Peripheral Blood Mononuclear Cells Indicates Adaptive Response to Low-Dose Radiation in Individuals from High Background Radiation Areas of Kerala. Mutagenesis, 33, 359-370. https://doi.org/10.1093/mutage/gey036
[63]
Nogami, M., Huang, J.T., Nakamura, L.T. and Makinodan, T. (1994) T Cells Are the Cellular Target of the Proliferation-Augmenting Effect of Chronic Low-Dose Ionizing Radiation in Mice. Radiation Research, 139, 47-52.
https://doi.org/10.2307/3578731
[64]
Sadekova, S., Lehnert, S. and Chow, T.Y.K. (1997) Induction of PBP74/Mortalin/Grp75, a Member of the Hsp70 Family, by Low Doses of Ionizing Radiation: A Possible Role in Induced Radioresistance. International Journal of Radiation Biology, 72, 653-660.
https://doi.org/10.1080/095530097142807
[65]
Kang, C.M., Park, K.P., Cho, C.K., Seo, J.S., Park, W.Y., Lee, S.J. and Lee, Y.S. (2002) Hspa4 (HSP70) Is Involved in the Radioadaptive Response: Results from Mouse Splenocytes. Radiation Research, 157, 650-655.
https://doi.org/10.1667/0033-7587(2002)157[0650:HHIIIT]2.0.CO;2
[66]
Boehme, K.A. and Blattner, C. (2009) Regulation of p53—Insights into a Complex Process. Critical Reviews in Biochemistry and Molecular Biology, 44, 367-392.
https://doi.org/10.3109/10409230903401507
[67]
Chaudhry, M.A. (2006) Bystander Effect: Biological Endpoints and Microarray Analysis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 597, 98-112. https://doi.org/10.1016/j.mrfmmm.2005.04.023
[68]
He, G., Tang, A., Xie, M., Xia, W., Zhao, P., Wei, J. and Liu, H. (2020) Blood Gene Expression Profile Study Revealed the Activation of Apoptosis and p53 Signaling Pathway May Be the Potential Molecular Mechanisms of Ionizing Radiation Damage and Radiation-Induced Bystander Effects. Dose-Response, 18, 1559325820914184.
https://doi.org/10.1177/1559325820914184
[69]
Durán, A., Hian, S.K., Miller, D.L., Le Heron, J., Padovani, R. and Vano, E. (2013) Recommendations for Occupational Radiation Protection in Interventional Cardiology. Catheterization and Cardiovascular Interventions, 82, 29-42.
https://doi.org/10.1002/ccd.24694
[70]
Durham, J. (2006) Concepts, Quantities, and Dose Limits in Radiation Protection Dosimetry. Radiation Measurements, 41, S28-S35.
https://doi.org/10.1016/j.radmeas.2007.01.011