全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于CRISPR/Cas系统的即时诊断研究进展
Progress in Point-of-Care Diagnosis Based on CRISPR/Cas System

DOI: 10.12677/JSTA.2023.116056, PP. 493-504

Keywords: CRISPR/Cas,分子诊断,现场检测
CRISPR/Cas
, Molecular Diagnostic, Point of Care

Full-Text   Cite this paper   Add to My Lib

Abstract:

面对突发公共卫生事件,快速、准确和便携的现场检测至关重要。基于CRISPR/Cas技术的分子诊断是目前现场检测主要方法,可以与多种信号传感方法相结合,集成到智能设备中,开发多个检测新平台。本文介绍基于CRISPR/Cas系统的传感器发展和现场应用,对CRISPR和现场检测的发展前景进行总结和展望。
Fast, accurate and portable onsite testing is critical in the face of public health emergencies. Molecular diagnosis based on CRISPR/Cas technology is currently the main method of detection, which can be combined with a variety of signal sensing methods, integrated into smart devices, and develop multiple new detection platforms. This paper introduces the sensor development and field application based on CRISPR/Cas system, and summarizes and prospects the development prospect of CRISPR and field detection.

References

[1]  李凯, 罗云波, 许文涛. CRISPR-Cas生物传感器研究进展[J]. 生物技术进展, 2019, 9(6): 579-591.
[2]  Hong, Z.A., Jing, L.A., et al. (2019) Advances in DNA/RNA Detection Using Nanotechnology. In: Advances in Clinical Chemistry, Vol. 91, Elsevier, Amsterdam, 31-98.
https://doi.org/10.1016/bs.acc.2019.03.002
[3]  Li, Y., Man, S., Ye, S., et al. (2022) CRISPR-Cas-Based Detection for Food Safety Problems: Current Status, Challenges, and Opportu-nities. Comprehensive Reviews in Food Science and Food Safety, 21, 3770-3798.
https://doi.org/10.1111/1541-4337.13000
[4]  陈思, 林昱坤, 宋春燕, 只帅, 李毅, 杨丹婷. 基于CRISPR/Cas系统的核酸生物传感器研究进展[J/OL]. 生物化学与生物物理进展: 1-18.
[5]  Shmakov, S., Smargon, A., Scott, D., et al. (2017) Diversity and Evolution of Class 2 CRISPR-Cas Systems. Nature Reviews Microbiology, 15, 169-182.
https://doi.org/10.1038/nrmicro.2016.184
[6]  Marraffini, L.A. (2015) CRISPR-Cas Immunity in Prokaryotes. Nature, 526, 55-61.
https://doi.org/10.1038/nature15386
[7]  Jinek, M., Jiang, F., Taylor, D.W., et al. (2014) Structures of Cas9 En-donucleases Reveal RNA-Mediated Conformational Activation. Science, 343, Article ID: 1247997.
https://doi.org/10.1126/science.1247997
[8]  Chen, J.S., Ma, E., Harrington, L.B., et al. (2018) CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science, 360, 436-439.
https://doi.org/10.1126/science.aar6245
[9]  Chen, H., Zhou, X., Wang, M., et al. (2023) Towards Point of Care CRISPR-Based Diagnostics: From Method to Device. Journal of Functional Biomaterials, 14, Article No. 97.
https://doi.org/10.3390/jfb14020097
[10]  Cai, X., Zhao, D., Li, X., et al. (2022) An Ultrasensitive Biosensing Platform for FEN1 Activity Detection Based on Target-Induced Primer Extension to Trigger the Collateral Cleavage of CRISPR/Cas12a. Analytica Chimica Acta, 1233, Article ID: 340519.
https://doi.org/10.1016/j.aca.2022.340519
[11]  Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J., et al. (2018) Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a, and Csm6. Science, 360, 439-444.
https://doi.org/10.1126/science.aaq0179
[12]  Myhrvold, C., Freije, C.A., Gootenberg, J.S., et al. (2018) Field-Deployable Viral Diagnostics Using CRISPR-Cas13. Science, 360, 444-448.
https://doi.org/10.1126/science.aas8836
[13]  Joung, J., Ladha, A., Saito, M., et al. (2020) Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. New England Journal of Medicine, 383, 1492-1494.
https://doi.org/10.1056/NEJMc2026172
[14]  Wang, R., Qian, C., Pang, Y., et al. (2021) opvCRISPR: One-Pot Visual RT-LAMP-CRISPR Platform for SARS-cov-2 Detection. Biosensors and Bioelectronics, 172, Article ID: 112766.
https://doi.org/10.1016/j.bios.2020.112766
[15]  Ding, X., Yin, K., Li, Z., et al. (2020) Ultrasensitive and Visual Detection of SARS-CoV-2 Using All-in-One Dual CRISPR-Cas12a Assay. Nature Communications, 11, Article No. 4711.
https://doi.org/10.1038/s41467-020-18575-6
[16]  Broughton, J.P., Deng, X., Yu, G., et al. (2020) CRISPR-Cas12-Based Detection of SARS-CoV-2. Nature Biotechnology, 38, 870-874.
https://doi.org/10.1038/s41587-020-0513-4
[17]  Yu, S., Nimse, S.B., Kim, J., et al. (2020) Development of a Lat-eral Flow Strip Membrane Assay for Rapid and Sensitive Detection of the SARS-CoV-2. Analytical Chemistry, 92, 14139-14144.
https://doi.org/10.1021/acs.analchem.0c03202
[18]  Lee, R.A., Puig, H.D., Nguyen, P.Q., et al. (2020) Ultrasensi-tive CRISPR-Based Diagnostic for Field-Applicable Detection of Plasmodium Species in Symptomatic and Asympto-matic Malaria. Proceedings of the National Academy of Sciences, 117, 25722-25731.
https://doi.org/10.1073/pnas.2010196117
[19]  Wu, J., Mukama, O., Wu, W., et al. (2020) A CRISPR/Cas12a Based Universal Lateral Flow Biosensor for the Sensitive and Specific Detection of African Swine-Fever Viruses in Whole Blood. Biosensors, 10, Article No. 203.
https://doi.org/10.3390/bios10120203
[20]  Bai, J., Lin, H., Li, H., et al. (2019) Cas12a-Based On-Site and Rapid Nucleic Acid Detection of African Swine Fever. Frontiers in Microbiology, 10, Article No. 2830.
https://doi.org/10.3389/fmicb.2019.02830
[21]  Mukama, O., Wu, J., Li, Z., et al. (2020) An Ultrasensitive and Specific Point-of-Care CRISPR/Cas12 Based Lateral Flow Biosensor for the Rapid Detection of Nucleic Acids. Biosen-sors and Bioelectronics, 159, Article ID: 112143.
https://doi.org/10.1016/j.bios.2020.112143
[22]  Lei, R., Li, Y., Li, L., et al. (2022) A CRISPR/Cas12a-Based Portable Platform for Rapid Detection of Leptosphaeria Maculans in Brassica Crops. Frontiers in Plant Science, 13, Arti-cle ID: 976510.
https://doi.org/10.3389/fpls.2022.976510
[23]  Wang, X., Ji, P., Fan, H., et al. (2020) CRISPR/Cas12a Technology Combined with Immunochromatographic Strips for Portable Detection of African Swine Fever Virus. Communications Biology, 3, Article No. 62.
https://doi.org/10.1038/s42003-020-0796-5
[24]  Yuan, C., Tian, T., Sun, J., et al. (2020) Universal and Na-ked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a/13a System. Analytical Chemistry, 92, 4029-4037.
https://doi.org/10.1021/acs.analchem.9b05597
[25]  Liu, S., Xie, T., Pei, X., et al. (2023) CRISPR-Cas12a Coupled with Universal Gold Nanoparticle Strand-Displacement Probe for Rapid and Sensitive Visual SARS-CoV-2 Detection. Sensors and Actuators B: Chemical, 377, Article ID: 133009.
https://doi.org/10.1016/j.snb.2022.133009
[26]  Zhang, W.S., Pan, J., Li, F., et al. (2021) Reverse Transcription Recombinase Polymerase Amplification Coupled with CRISPR-Cas12a for Facile and Highly Sensitive Colorimetric SARS-CoV-2 Detection. Analytical Chemistry, 93, 4126-4133.
https://doi.org/10.1021/acs.analchem.1c00013
[27]  Broto, M., Kaminski, M.M., Adrianus, C., et al. (2022) Nanozyme-Catalysed CRISPR Assay for Preamplification-Free Detection of Non-Coding RNAs. Nature Nanotechnolo-gy, 17, 1120-1126.
https://doi.org/10.1038/s41565-022-01179-0
[28]  Hajian, R., Balderston, S., Tran, T., et al. (2019) Detection of Unamplified Target Genes via CRISPR-Cas9 Immobilized on a Graphene Field-Effect Transistor. Nature Biomedical Engineering, 3, 427-437.
https://doi.org/10.1038/s41551-019-0371-x
[29]  Yang, W., Restrepo-Pérez, L., Bengtson, M., et al. (2018) Detec-tion of CRISPR-dCas9 on DNA with Solid-State Nanopores. Nano Letters, 18, 6469-6474.
https://doi.org/10.1021/acs.nanolett.8b02968
[30]  Weckman, N.E., Ermann, N., Gutierrez, R., et al. (2019) Multi-plexed DNA Identification Using Site Specific dCas9 Barcodes and Nanopore Sensing. ACS Sensors, 4, 2065-2072.
https://doi.org/10.1021/acssensors.9b00686
[31]  Nouri, R., Jiang, Y., Lian, X.L., et al. (2020) Sequence-Specific Recognition of HIV-1 DNA with Solid-State CRISPR-Cas12a-Assisted Nanopores (SCAN). ACS Sensors, 5, 1273-1280.
https://doi.org/10.1021/acssensors.0c00497
[32]  Dai, Y., Somoza, R.A., Wang, L., et al. (2019) Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. An-gewandte Chemie, 131, 17560-17566.
https://doi.org/10.1002/ange.201910772
[33]  Zhang, D., Yan, Y., Que, H., et al. (2020) CRISPR/Cas12a-Mediated Interfacial Cleaving of Hairpin DNA Reporter for Electrochemical Nucleic Acid Sensing. ACS Sensors, 5, 557-562.
https://doi.org/10.1021/acssensors.9b02461
[34]  Bruch, R., Baaske, J., Chatelle, C., et al. (2019) CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diag-nostics. Advanced Materials, 31, Article ID: 1905311.
https://doi.org/10.1002/adma.201905311
[35]  Bonini, A., Poma, N., Vivaldi, F., et al. (2021) A Label-Free Im-pedance Biosensing Assay Based on CRISPR/Cas12a Collateral Activity for Bacterial DNA Detection. Journal of Pharmaceutical and Biomedical Analysis, 204, Article ID: 114268.
https://doi.org/10.1016/j.jpba.2021.114268
[36]  Zamani, M., Robson, J.M., Fan, A., et al. (2021) Electrochemical Strategy for Low-Cost Viral Detection. ACS Central Science, 7, 963-972.
https://doi.org/10.1021/acscentsci.1c00186
[37]  Li, F., Ye, Q., Chen, M., et al. (2021) An Ultrasensitive CRISPR/Cas12a Based Electrochemical Biosensor for Listeria Monocytogenes Detection. Biosensors and Bioelectronics, 179, Article ID: 113073.
https://doi.org/10.1016/j.bios.2021.113073
[38]  Luo, Y., Shan, S., Wang, S., et al. (2022) Accurate Detection of Salmonella Based on Microfluidic Chip to Avoid Aerosol Contamination. Foods, 11, Article No. 3887.
https://doi.org/10.3390/foods11233887
[39]  Wu, H., Chen, Y., Yang, Q., et al. (2021) A Reversible Valve-Assisted Chip Coupling with Integrated Sample Treatment and CRISPR/Cas12a for Visual Detection of Vibrio parahaemolyticus. Biosensors and Bioelectronics, 188, Article ID: 113352.
https://doi.org/10.1016/j.bios.2021.113352
[40]  Wu, H., Qian, S., Peng, C., et al. (2021) Rotary Valve-Assisted Fluidic System Coupling with CRISPR/Cas12a for Fully Integrated Nucleic Acid Detection. ACS Sensors, 6, 4048-4056.
https://doi.org/10.1021/acssensors.1c01468
[41]  Nguyen, P.Q., Soenksen, L.R., Donghia, N.M., et al. (2021) Wearable Materials with Embedded Synthetic Biology Sensors for Biomolecule Detection. Nature Biotechnology, 39, 1366-1374.
https://doi.org/10.1038/s41587-021-00950-3
[42]  Li, P., Zhang, J., Lin, Q., et al. (2021) Rapid Differential Diag-nosis of the B.1.617.2 (Delta) Variant of SARS-CoV-2 Using an Automated Cas12a-Microfluidic System. Chemical Communications, 57, 12270-12272.
https://doi.org/10.1039/D1CC04874K
[43]  Yin, K., Ding, X., Li, Z., et al. (2021) Autonomous Lab-on-Paper for Multiplexed, CRISPR-Based Diagnostics of SARS-CoV-2. Lab on a Chip, 21, 2730-2737.
https://doi.org/10.1039/D1LC00293G
[44]  Welch, N.L., Zhu, M., Hua, C., et al. (2022) Multiplexed CRISPR-Based Microfluidic Platform for Clinical Testing of Respiratory Viruses and Identification of SARS-CoV-2 Variants. Nature Medicine, 28, 1083-1094.
https://doi.org/10.1038/s41591-022-01734-1
[45]  Chen, Y., Shi, Y., Chen, Y., et al. (2020) Contamination-Free Visual Detection of SARS-CoV-2 with CRISPR/Cas12a: A Promising Method in the Point-of-Care Detection. Biosen-sors and Bioelectronics, 169, Article ID: 112642.
https://doi.org/10.1016/j.bios.2020.112642
[46]  Samacoits, A., Nimsamer, P., Mayuramart, O., et al. (2021) Ma-chine Learning-Driven and Smartphone-Based Fluorescence Detection for CRISPR Diagnostic of SARS-CoV-2. ACS Omega, 6, 2727-2733.
https://doi.org/10.1021/acsomega.0c04929
[47]  Fozouni, P., Son, S., de León Derby, M.D., et al. (2021) Amplifi-cation-Free Detection of SARS-CoV-2 with CRISPR-Cas13a and Mobile Phone Microscopy. Cell, 184, 323-333.e9.
https://doi.org/10.1016/j.cell.2020.12.001
[48]  Xiong, Y., Zhang, J., Yang, Z., et al. (2019) Functional DNA Reg-ulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic-Acid Targets. Journal of the American Chemical Society, 142, 207-213.
https://doi.org/10.1021/jacs.9b09211
[49]  Ding, L., Wu, Y., Liu, L., et al. (2023) Universal DNAzyme Walk-ers-Triggered CRISPR-Cas12a/Cas13a Bioassay for the Synchronous Detection of Two Exosomal Proteins and Its Ap-plication in Intelligent Diagnosis of Cancer. Biosensors and Bioelectronics, 219, Article ID: 114827.
https://doi.org/10.1016/j.bios.2022.114827
[50]  Li, J., Yang, S., Zuo, C., et al. (2020) Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations. ACS Sensors, 5, 970-977.
https://doi.org/10.1021/acssensors.9b02305
[51]  Lv, Z., Wang, Q. and Yang, M. (2021) Multivalent Du-plexed-Aptamer Networks Regulated a CRISPR-Cas12a System for Circulating Tumor Cell Detection. Analytical Chem-istry, 93, 12921-12929.
https://doi.org/10.1021/acs.analchem.1c02228
[52]  Zhao, X., Zhang, W., Qiu, X., et al. (2020) Rapid and Sensitive Exosome Detection with CRISPR/Cas12a. Analytical and Bioanalytical Chemistry, 412, 601-609.
https://doi.org/10.1007/s00216-019-02211-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133