|
Modern Linguistics 2023
意义建构与价值塑造:AIGC对话语料与翻译课程思政数字化素材建设
|
Abstract:
人工智能辅助翻译时代,翻译教学越来越离不开AIGC。翻译过程中产生的AIGC对话语料,体现学生多轮对话能力和动态学习过程,其暂态性、生成性、对话性可作为课程思政的突破口。从AI翻译到译后编辑这一过程,实际上是人机互动共建知识的过程,是知识创造从暂态向稳态的回归。译后编辑实际上成了AIGC暂态译文转化为人机互动生成稳态译文的元认知建构过程。AIGC翻译语料实际上是意义建构的终极展现形态,是学生在人与机器互动的情景中,通过指令的设置、发出与接收进行协作,层层推进多轮对话,实现意义的建构。教师引导下的AIGC语料生产,具有非常典型的课程思政隐性特征。
In the era of Artificial Intelligence (AI) assisted translation, translation teaching increasingly relies on AI-Generated Content (AIGC). The AIGC dialogue record produced during the translation process reflects students’ multi-turn dialogue capabilities and dynamic learning processes. Its transient, generative, and dialogical nature can serve as a breakthrough for ideological orientation in translation courses. The process from AI translation to post-editing is, in fact, a process of co-constructing knowledge through human-machine interaction, representing a return of knowledge creation from transience to stability. Post-editing has become the metacognitive construction process of turning AIGC transient translations into human-machine co-generated stable translations. AIGC translation records constitute indeed the ultimate manifestation of meaning construction, where students, in the context of human-machine interaction, collaborate through command setting, issuing, and receiving, advancing multi-turn dialogues, and achieving meaning construction. The production of an AIGC database under teacher guidance possesses very typical implicit features of ideological orientation.
[1] | 邱燕楠, 李政涛. 挑战?融合?变革: “ChatGPT与未来教育”会议综述[J]. 现代远程教育研究, 2023, 35(3): 3-12+21. |
[2] | 杜华, 顾小清. 人工智能时代的知识观审思[J]. 中国远程教育, 2022(10): 1-9+76. |
[3] | 李建中. 人工智能: 不确定的自主性知识创造[J]. 自然辩证法研究, 2019, 35(1): 117-122. |
[4] | 覃军. 热观察与冷思考: 翻译课程思政建设的现状、问题与实践路向探究[J]. 中国翻译, 2023, 44(1): 85-91. |
[5] | 张静. 融合式翻译课程思政教学模式的建构[J]. 当代外语研究, 2023(2): 106-112+123. |
[6] | 威廉?庞德斯通. 知识大迁移: 移动时代知识的真正价值[M]. 闾佳, 译. 杭州: 浙江人民出版社, 2018. |
[7] | Aljanabi, M. (2023) ChatGPT: Future Directions and Open Possibilities. Mesopotamian Journal of Cyber Security, 2023, 16-17. https://doi.org/10.58496/MJCS/2023/003 |
[8] | 焦建利. ChatGPT助推学校教育数字化转型——人工智能时代学什么与怎么教[J]. 中国远程教育, 2023(4): 16-23. |
[9] | 周葆华. 或然率资料库: 作为知识新媒介的生成智能ChatGPT [J]. 现代出版, 2023(2): 21-32. |
[10] | Zhai, X. (2023) ChatGPT for Next Generation Science Learning.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4331313
https://doi.org/10.2139/ssrn.4331313 |
[11] | Chang, C.Y., Hwang, G.J. and Gau, M.L. (2022) Promoting Students’ Learning Achievement and Self-Efficacy: A Mobile Chatbot Approach for Nursing Training. British Journal of Educational Technology, 53, 171-188.
https://doi.org/10.1111/bjet.13158 |
[12] | Wu, Y., Schuster, M., Chen, Z., et al. (2016) Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. |
[13] | Omar, F. (2022) Chatgpt in Education Engaging and Educating Students with a Powerful Language Model.
https://www.youtube.com/watch?v=XXnc2T879kQ |
[14] | 文杰. 知识的本质与德性知识论——以“原因”关系消解两类认知运气[J]. 自然辩证法研究, 2020(10): 31-36. |
[15] | 戴维?温伯格. 知识的边界[M]. 胡泳, 高美, 译. 太原: 山西人民出版社, 2014. |
[16] | 张良, 关素芳. 为理解而学: 人工智能时代的知识学习[J]. 湖南师范大学教育科学学报, 2021(1): 55-60. |
[17] | 郑燕林, 任维武. 实践观视域下ChatGPT教学应用的路径选择[J]. 现代远距离教育, 2023(3): 1-14. |
[18] | 王佑镁, 等. “阿拉丁神灯”还是“潘多拉魔盒”: ChatGPT教育应用的潜能与风险[J]. 现代远程教育研究, 2023(2): 48-56. |
[19] | Hartley, J. (2010) The Probability Archive: From Essence to Uncertainty in the Growth of Knowledge. Proceedings of the Internet Turning 40: The Never-Ending Novelty of New Media Research, Hong Kong, 17-19 June 2010, 1-28. |
[20] | 高奇琦, 严文锋. 知识革命还是教育异化? ChatGPT与教育的未来[J]. 新疆师范大学学报(哲学社会科学版), 2023(5): 1-11. |
[21] | 宁琦. 数字人文赋能外语学科的思考与探索[J]. 外语界, 2023(1): 12-17. |
[22] | Ackoff, R.L. (1989) From Data to Wisdom. Journal of Applied Systems Analysis, 16, 3-9. |
[23] | Vygotsky, L.S. (1978) Mind in Society: The Development of Higher Psychological Processes. Harvard University Press, Cambridge. |
[24] | 田洪鋆. 批判性思维视域下课程思政的教与学[M]. 北京: 法律出版社, 2021. |
[25] | 盛云岚. 欧洲CLIL模式: 外语教学法的新视角[J]. 山东外语教学, 2012, 33(5): 65-69. |