全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钾掺杂2-苯基蒽的晶体结构和磁性研究
Crystal Structure and Magnetic Property of Potassium-Doped 2-Phenylanthracene

DOI: 10.12677/CMP.2023.123006, PP. 43-53

Keywords: 2-苯基蒽,钾掺杂,高真空退火,磁性,第一性原理计算
2-Phenylanthracene
, Potassium-Doped, High Vacuum Annealing, Magnetism, First-Principle Calculations

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文通过高真空退火制备工艺成功合成了钾掺杂2-苯基蒽分子晶体。直流磁性测量表明,合成样品在1.8~300 K温度范围内表现为类似于顺磁的磁性行为。通过居里–外斯公式、海森堡自旋链模型和平均场近似进一步对直流磁化率曲线进行拟合和计算分析发现,合成样品具有一维海森堡反铁磁链的磁性特征,且|J|/KB约为15 K。结合X-射线衍射和第一性原理的计算结果发现,钾原子与2-苯基蒽分子按照1:1的比例在P1空间群下形成了新的晶体结构。电子结构计算和拉曼光谱的研究表明,磁矩是由K-4s电子转移到2-苯基蒽的π-分子轨道上形成的。磁性计算结果表明,沿着c轴方向层间分子磁矩之间具有较强的反铁磁相互作用,而层内分子磁矩之间的磁相互作用很弱,这是一维反铁磁性的形成原因。
This article successfully synthesized potassium-doped 2-phenylanthracene molecular crystals through a high vacuum annealing process. DC magnetic measurements revealed that the synthesized samples exhibit paramagnetic-like behavior within the temperature range of 1.8-300 K. By fitting and analyzing the DC magnetization curves using the Curie-Weiss formula, Heisenberg spin chain model, and mean-field approximation, it was found that the synthesized samples possess the magnetic characteristics of a one-dimensional Heisenberg antiferromagnetic chain, with |J|/KB approximately equal to 15 K. Combined with X-ray diffraction and first principle calculations, it was discovered that potassium atoms and 2-phenylanthracene molecules form a new crystal structure in a 1:1 ratio under the P1 space group. Electronic structure calculations and Raman spectroscopy studies indicate that the magnetic moments are formed by the transfer of K-4s electrons to the π-molecular orbitals of 2-phenylanthracene. The magnetic calculation results demonstrate that there is a strong antiferromagnetic interaction between the interlayer molecular magnetic moments along the c-axis, while the magnetic interaction between the intralayer molecular magnetic moments is weak. This is the reason for the formation of one-dimensional antiferromagnetic properties.

References

[1]  Van Damme, J. and Du Prez, F. (2018) Anthracene-Containing Polymers toward High-End Applications. Progress in Polymer Science, 82, 92-119.
https://doi.org/10.1016/j.progpolymsci.2018.02.002
[2]  Senseman, C.E. and Nelson, O.A. (1923) Catalytic Oxidation of Anthracene to Anthraquinone. Industrial & Engineering Chemistry, 15, 521-524.
https://doi.org/10.1021/ie50161a040
[3]  Pinilla, J.L., García, A.B., Philippot, K., Lara, P., García-Suárez, E.J. and Millan, M. (2014) Carbon-Supported Pd Nanoparticles as Catalysts for Anthracene Hydrogenation. Fuel, 116, 729-735.
https://doi.org/10.1016/j.fuel.2013.08.067
[4]  Figueira-Duarte, T.M. and Müllen, K. (2011) Pyrene-Based Materials for Organic Electronics. Chemical Reviews, 111, 7260-7314.
https://doi.org/10.1021/cr100428a
[5]  Qiu, F., Dong, Y., Liu, J., Sun, Y., Geng, H., Zhang, H., Zhu, D., Shi, X., Liu, J., Zhang, J., Ai, S. and Jiang, L. (2020) Asymmetric Organic Semiconductors for High Performance Single Crystalline Field-Effect Transistors with Low Activation Energy. Journal of Materials Chemistry C, 8, 6006-6012.
https://doi.org/10.1039/D0TC01122C
[6]  Valentini, L., Bagnis, D., Marrocchi, A., Seri, M., Taticchi, A. and Kenny, J.M. (2008) Novel Anthracene-Core Molecule for the Development of Efficient PCBM-Based Solar Cells. Chemistry of Materials, 20, 32-34.
https://doi.org/10.1021/cm703011k
[7]  Wright, G.T. (1955) Absolute Scintillation Efficiency of Anthracene Crystals. Proceedings of the Physical Society: Section B, 68, Article 929.
https://doi.org/10.1088/0370-1301/68/11/317
[8]  Nguyen, T.V.T. and Seo, Y.J. (2017) Highly Sensitive Fluorescent Sensor Targeting CuCl2 Based on Thiophene Attached Anthracene Compound (TA). Tetrahedron Letters, 58, 941-944.
https://doi.org/10.1016/j.tetlet.2017.01.071
[9]  Szemenyei, B., Móczár, I., Pál, D., Kocsis, I., Baranyai, P. and Huszthy, P. (2016) Synthesis and Enantiomeric Recognition Studies of Optically Active Pyridino-Crown Ethers Containing an Anthracene Fluorophore Unit. Chirality, 28, 562-568.
https://doi.org/10.1002/chir.22614
[10]  Huang, Q., Lu, G., Shen, H.M., Chung, M.C.M. and Ong, C.N. (2007) Anti-Cancer Properties of Anthraquinones from Rhubarb. Medicinal Research Reviews, 27, 609-630.
https://doi.org/10.1002/med.20094
[11]  Shrestha, J.P., Fosso, M.Y., Bearss, J. and Chang, C.W.T. (2014) Synthesis and Anticancer Structure Activity Relationship Investigation of Cationic Anthraquinone Analogs. European Journal of Medicinal Chemistry, 77, 96-102.
https://doi.org/10.1016/j.ejmech.2014.02.060
[12]  Bonadonna, G., Monfardini, S., de Lena, M. and Fossati-Bellani, F. (1969) Clinical Evaluation of Adriamycin, a New Antitumour Antibiotic. The BMJ, 3, 503-506.
https://doi.org/10.1136/bmj.3.5669.503
[13]  Van Gorkom, B.A.P., De Vries, E.G.E., and Kleibeuker, K. (1999) Review Article: Anthranoid Laxatives and Their Potential Carcinogenic Effects. Alimentary Pharmacology & Therapeutics, 13, 443-452.
https://doi.org/10.1046/j.1365-2036.1999.00468.x
[14]  Sch?n, J.H., Kloc, C. and Batlogg, B. (2000) RETRACTED ARTICLE: Superconductivity in Molecular Crystals Induced by Charge Injection. Nature, 406, 702-704.
https://doi.org/10.1038/35021011
[15]  Phan, Q.T.N., Heguri, S., Tanabe, Y., Shimotani, H., Nakano, T., Nozue, Y. and Tanigaki, K. (2014) Tuning of the Ground State in Electron Doped Anthracene. Dalton Transactions, 43, 10040-10045.
https://doi.org/10.1039/c4dt00071d
[16]  Hillesheim, D., Gofryk, K. and Sefat, A.S. (2015) On the Nature of Filamentary Superconductivity in Metal-Doped Hydrocarbon Organic Materials. Novel Superconducting Materials, 1, 12-14.
https://doi.org/10.1515/nsm-2015-0001
[17]  Wang, X.F., Liu, R.H., Gui, Z., Xie, Y.L., Yan, Y.J., Ying, J.J., Luo, X.G. and Chen, X.H. (2011) Superconductivity at 5 K in Alkali-Metal-Doped Phenanthrene. Nature Communications, 2, Article No. 507.
https://doi.org/10.1038/ncomms1513
[18]  Takabayashi, Y., Menelaou, M., Tamura, H., Takemori, N., Koretsune, T., ?tefan?i?, A., Klupp, G., Buurma, A.J.C., Nomura, Y., Arita, R., Ar?on, D., Rosseinsky, M.J. and Prassides, K. (2017) π-electron S? = ?? Quantum Spin-Liquid State in an Ionic Polyaromatic Hydrocarbon. Nature Chemistry, 9, 635-643.
https://doi.org/10.1038/nchem.2764
[19]  付明安, 王仁树, 钟国华, 张杰, 张培源, 陈晓嘉, 高云, 黄忠兵. 钾掺杂9-甲基蒽的晶体结构和磁性研究[J]. 凝聚态物理学进展, 2019, 8(4): 77-85.http://dx.doi.org/10.12677/CMP.2019.84010
[20]  Fu, M.A., Wang, R.S., Yang, H., Zhang, P.Y., Zhang, C.F., Chen, X.J., Gao, Y. and Huang, Z.B. (2021) π-Electron Weak Ferro-magnetism in Potassium-Intercalated 9-Phenylanthracene. Carbon, 173, 587-593.
https://doi.org/10.1016/j.carbon.2020.11.064
[21]  Benitez, M.J., Petracic, O., Salabas, E.L., Radu, F., Tüysüz, H., Schüth, F. and Zabel, H. (2008) Evidence for Core-Shell Magnetic Behavior in Antiferromagnetic Co3O4 Nanowires. Physical Review Letters, 101, Article ID: 097206.
https://doi.org/10.1103/PhysRevLett.101.097206
[22]  Wojciechowska, A., Janczak, J., Zierkiewicz, W., Rytlewski, P., Rojek, T. and Duczmal, M. (2019) Copper (II) Complex with L-Arginine—Crystal Structure, DFT Calculations, Spectroscopic, Thermal and Magnetic Properties. Materials Chemistry and Physics, 228, 272-284.
https://doi.org/10.1016/j.matchemphys.2019.02.037
[23]  Han, T., Shi, W., Niu, Z., Na, B. and Cheng, P. (2013) Magnetic Blocking from Exchange Interactions: Slow Relaxation of the Magnetization and Hysteresis Loop Observed in a Dysprosi-um—Nitronyl Nitroxide Chain Compound with an Antiferromagnetic Ground State. Chemistry—A European Journal, 19, 994-1001.
https://doi.org/10.1002/chem.201202708
[24]  Rahaman, B., Kar, S., Vasiliev, A. and Saha-Dasgupta, T. (2018) Interplay of Alternation and Further Neighbor Interaction in S = 1/2 Spin Chains: A Case Study of Cs2CuAl4O8. Physical Review B, 98, Article ID: 144412.
https://doi.org/10.1103/PhysRevB.98.144412
[25]  Hosokoshi, Y., Tamura, M., Sawa, H., Kato, R. and Kinoshita, M. (1995) Two-Dimensional Ferromagnetic Intermolecular Interactions in Crystals of the p-Cyanophenyl Nitronyl Nitroxide Radical. Journal of Materials Chemistry, 5, 41-46.
https://doi.org/10.1039/jm9950500041
[26]  Baldamus, J., Berghof, C., Cole, M.L., Evans, D.J., Hey-Hawkins, E. and Junk, P.C. (2002) N,N’-Di (Tolyl) Formamidinate Complexes of Potassium: Studies of Ancillary Donor Imposed Molecular and Supramolecular Structure. Journal of the Chemical Society, Dalton Transactions, No. 2, 4185-4192.
https://doi.org/10.1039/B206165A
[27]  Choudhary, R., Skomski, R. and Kashyap, A. (2017) Elec-tric-Field-Controlled Interface Exchange Coupling in Cobalt—Chromia Thin Films. IEEE Transactions on Magnetics, 53, 1-4.
https://doi.org/10.1109/TMAG.2017.2730178
[28]  ?apiński, A., Spanget-Larsen, J., Langg?rd, M., Waluk, J. and Radziszewski, J.G. (2001) Raman Spectrum of the Phenyl Radical. The Journal of Physical Chemistry A, 105, 10520-10524.
https://doi.org/10.1021/jp0114900
[29]  Xie, Y., Wang, X., Han, X., Xue, X., Ji, W., Qi, Z., Liu, J., Zhao, B. and Ozaki, Y. (2010) Sensing of Polycyclic Aromatic Hydrocarbons with Cyclodextrin Inclusion Complexes on Silver Nanoparticles by Sur-face-Enhanced Raman Scattering. Analyst, 135, 1389-1394.
https://doi.org/10.1039/c0an00076k

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133