%0 Journal Article %T 钾掺杂2-苯基蒽的晶体结构和磁性研究
Crystal Structure and Magnetic Property of Potassium-Doped 2-Phenylanthracene %A 吴静 %A 付明安 %A 陈琳 %A 任闯 %A 高云 %A 黄忠兵 %J Advances in Condensed Matter Physics %P 43-53 %@ 2326-3520 %D 2023 %I Hans Publishing %R 10.12677/CMP.2023.123006 %X 本文通过高真空退火制备工艺成功合成了钾掺杂2-苯基蒽分子晶体。直流磁性测量表明,合成样品在1.8~300 K温度范围内表现为类似于顺磁的磁性行为。通过居里–外斯公式、海森堡自旋链模型和平均场近似进一步对直流磁化率曲线进行拟合和计算分析发现,合成样品具有一维海森堡反铁磁链的磁性特征,且|J|/KB约为15 K。结合X-射线衍射和第一性原理的计算结果发现,钾原子与2-苯基蒽分子按照1:1的比例在P1空间群下形成了新的晶体结构。电子结构计算和拉曼光谱的研究表明,磁矩是由K-4s电子转移到2-苯基蒽的π-分子轨道上形成的。磁性计算结果表明,沿着c轴方向层间分子磁矩之间具有较强的反铁磁相互作用,而层内分子磁矩之间的磁相互作用很弱,这是一维反铁磁性的形成原因。
This article successfully synthesized potassium-doped 2-phenylanthracene molecular crystals through a high vacuum annealing process. DC magnetic measurements revealed that the synthesized samples exhibit paramagnetic-like behavior within the temperature range of 1.8-300 K. By fitting and analyzing the DC magnetization curves using the Curie-Weiss formula, Heisenberg spin chain model, and mean-field approximation, it was found that the synthesized samples possess the magnetic characteristics of a one-dimensional Heisenberg antiferromagnetic chain, with |J|/KB approximately equal to 15 K. Combined with X-ray diffraction and first principle calculations, it was discovered that potassium atoms and 2-phenylanthracene molecules form a new crystal structure in a 1:1 ratio under the P1 space group. Electronic structure calculations and Raman spectroscopy studies indicate that the magnetic moments are formed by the transfer of K-4s electrons to the π-molecular orbitals of 2-phenylanthracene. The magnetic calculation results demonstrate that there is a strong antiferromagnetic interaction between the interlayer molecular magnetic moments along the c-axis, while the magnetic interaction between the intralayer molecular magnetic moments is weak. This is the reason for the formation of one-dimensional antiferromagnetic properties. %K 2-苯基蒽,钾掺杂,高真空退火,磁性,第一性原理计算
2-Phenylanthracene %K Potassium-Doped %K High Vacuum Annealing %K Magnetism %K First-Principle Calculations %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=69828