Human toxoplasmosis is caused by
the intracellular protozoan parasite Toxoplasma gondii. Although T. gondii infection is generally asymptomatic for most of the immunocompetent adults,
severe complications may occur particularly in pregnant women and
immunocompromised individual. Host cell immunity plays a critical role in
parasite differentiation and persistence in the host. Therefore, genetic
polymorphism in the host immune genes, for instance interferon-γ gene could be linked with possibility
of T. gondii infection. The objective of the study was to verify
the link between the single nucleotide polymorphisms (SNPs) in the IFN-γ gene of pregnant women and T.
gondii infection through correlating with anthropometric and sociodemographic parameters. In this study, ninety-two (N =
92) pregnant women (16 - 40 years) and healthy controls (N = 95) with similar
age ranges were included. Among them, 25% (n = 23) pregnant women were
seropositive for T. gondii IgG
antibodies by Rapid Test Assay. Allelic and genotypic frequencies of IFN-γ +874T/A (rs2430561) SNPs were
evaluated by using ARMS-PCR. The distribution
of the A and T alleles in the specific position of the IFN-γ gene in the T. gondii-infected pregnant women and the
control groups did not differ significantly,
according to the data. However, we found a higher frequency (13.04%) of A/A genotype in T. gondii infected pregnant women as compared to
non-infected individuals (8.70%), demonstrating that T. gondii infection
susceptibility may be increased by homozygosity for the A allele. Further
studies are to be needed to find out the link between host gene polymorphism
and T. gondii infection in
Bangladesh.
References
[1]
Wyrosdick, H.M. and Schaefer, J.J. (2015) Toxoplasma gondii: History and Diagnostic Test Development. Animal Health Research Reviews, 16, 150-162.
https://doi.org/10.1017/S1466252315000183
[2]
Al-Malki, E.S. (2021) Toxoplasmosis: Stages of the Protozoan Life Cycle and Risk Assessment in Humans and Animals for an Enhanced Awareness and an Improved Socio-Economic Status. Saudi Journal of Biological Sciences, 28, 962-969.
https://doi.org/10.1016/j.sjbs.2020.11.007
[3]
Hill, D. and Dubey, J.P. (2002) Toxoplasma gondii: Transmission, Diagnosis and Prevention. Clinical Microbiology and Infection, 8, 634-640.
https://doi.org/10.1046/j.1469-0691.2002.00485.x
[4]
McLeod, R., Lykins, J., Noble, A.G., Rabiah, P., Swisher, C.N., Heydemann, P.T., et al. (2014) Management of Congenital Toxoplasmosis. Current Pediatrics Reports, 2, 166-194. https://doi.org/10.1007/s40124-014-0055-7
[5]
Dubey, J.P., Murata, F.H.A., Cerqueira-Cézar, C.K., Kwok, O.C.H. and Villena, I. (2021) Congenital Toxoplasmosis in Humans: An Update of Worldwide Rate of Congenital Infections. Parasitology, 148, 1406-1416.
https://doi.org/10.1017/S0031182021001013
[6]
Dubey, J.P. (1998) Refinement of Pepsin Digestion Method for Isolation of Toxoplasma gondiifrom Infected Tissues. Veterinary Parasitology, 74, 75-77.
https://doi.org/10.1016/S0304-4017(97)00135-0
[7]
Peyron, F., Wallon, M., Kieffer, F. and Garweg, J. (2016) Toxoplasmosis. In: Wilson, C.B., Nizet, V., Maldonado, Y.A., Remington, J.S. and Klein, J.O., Eds., Infectious Diseases of the Fetus and Newborn Infant (8th Edition), Saunders, Philadelphia, 949-1042.
[8]
Besteiro, S. (2019) The Role of Host Autophagy Machinery in Controlling Toxoplasma Infection. Virulence, 10, 438-447.
https://doi.org/10.1080/21505594.2018.1518102
[9]
Cordeiro, C.A., Moreira, P.R., Costa, G.C., Dutra, W.O., Campos, W.R. and Ore, F. (2008) TNF-α Gene Polymorphism (−308G/A) and Toxoplasmic Retinochoroiditis. British Journal of Ophthalmology, 92, 986-988.
https://doi.org/10.1136/bjo.2008.140590
[10]
Andrade, J.M.A., de Oliveira, C.B.S., Meurer, Y.D.S.R., Santana, J.E., de Almeida, Y.G.B., Vilela Dos Santos, P., de Souza, D.M.S., Costa, G.P., Talvani, A., Palomino, G.M., Freitas, J.C.O.C. and de Andrade-Neto, V.F. (2020) Genetic Polymorphism in IL17RA Induces Susceptibility to Toxoplasma gondii Infection in Brazilian Pregnant Women. Acta Tropica, 11, Article ID: 105594.
https://doi.org/10.1016/j.actatropica.2020.105594
[11]
Albuquerque, M.C., Aleixo, A.L., Benchimol, E.I., Leandro, A.C., das Neves, L.B., Vicente, R.T., et al. (2009) The IFN-3+874T/A Gene Polymorphism Is Associated with Retinochoroiditis Toxoplasmosis Susceptibility. Memórias do Instituto Oswaldo Cruz, 104, 451-455. https://doi.org/10.1590/S0074-02762009000300009
[12]
Abu, E.K., Boampong, J.N., Kyei, S., Afoakwah, R. and Ayi, I. (2017) Associations between Polymorphisms within Interferon γ and Tumor Necrosis Factor Genes and Toxoplasma Retinochoroiditis in Ghanaian Patients. Ocular Immunology and Inflammation, 25, 678-684. https://doi.org/10.3109/09273948.2016.1159315
[13]
Lopez-Maderuelo, D., Arnalich, F., Serantes, R., Gonzalez, A., Codoceo, R., Madero, R., Vazquez, J.J. and Montiel, C. (2003) Interferon-γ and Interleukin-10 Gene Polymorphisms in Pulmonary Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 167, 970-975. https://doi.org/10.1164/rccm.200205-438BC
[14]
Dai, C.Y., Chuang, W.L., Hsieh, M.Y., Lee, L.P., Hou, N.J., Chen, S.C., Lin, Z.Y., Hsieh, M.Y., Wang, L.Y., Tsai, J.F., Chang, W.Y. and Yu, M.L. (2006) Polymorphism of Interferon-γ Gene at Position +874 and Clinical Characteristics of Chronic Hepatitis C. Translational Research, 148, 128-133.
https://doi.org/10.1016/j.trsl.2006.04.005
[15]
Henao, M.I., Montes, C., Paris, S.C. and García, L.F. (2006) Cytokine Gene Polymorphisms in Colombian Patients with Different Clinical Presentations of Tuberculosis. Tuberculosis, 86, 11-19. https://doi.org/10.1016/j.tube.2005.03.001
[16]
Yu, H., Zhu, Q.R., Gu, S.Q. and Fei, L.E. (2006) Relationship between IFN-γ Gene Polymorphism and Susceptibility to Intrauterine HBV Infection. World Journal of Gastroenterology, 12, 2928-2931. https://doi.org/10.3748/wjg.v12.i18.2928
[17]
Zambon, C.F., Basso, D., Navaglia, F., Belluco, C., Falda, A., Fogar, P., Greco, E., Gallo, N., Rugge, M., Di Mario, F. and Plebani, M. (2005) Pro- and Anti-Inflammatory Cytokines Gene Polymorphisms and Helicobacter pylori Infection: Interactions Influence Outcome. Cytokine, 29, 141-152. https://doi.org/10.1016/j.cyto.2004.10.013
[18]
Tsiavou, A., Hatziagelaki, E., Chaidaroglou, A., Koniavitou, K., Degiannis, D. and Raptis, A.S. (2005) Correlation between Intracellular Interferon-γ (IFN-γ) Production by CD4+ and CD8+ Lymphocytes and IFN-γ Gene Polymorphism in Patients with Type 2 Diabetes Mellitus and Latent Autoimmune Diabetes of Adults (LADA). Cytokine, 31, 135-141. https://doi.org/10.1016/j.cyto.2005.02.011
[19]
Spriewald, B.M., Witzke, O., Wassmuth, R., Wenzel, R.R., Arnold, M.L., Philipp, T. and Kalden, J.R. (2005) Distinct Tumor Necrosis Factor α, Interferon γ, Interleukin 10 and Cytotoxic T Cell Antigen 4 Gene Polymorphisms in Disease Occurrence and End Stage Renal Disease in Wegener’s Granulomatosis. Annals of the Rheumatic Diseases, 64, 457-461. https://doi.org/10.1136/ard.2004.025809
[20]
Kamali-Sarvestani, E., Merat, A. and Talei, A.R. (2005) Polymorphism in the Genes of α and β Tumor Necrosis Factors (TNF-α and TNF-β) and γ Interferon (IFN-γ) among Iranian Women with Breast Cancer. Cancer Letters, 223, 113-119.
https://doi.org/10.1016/j.canlet.2004.09.025
[21]
Ito, C., Watanabe, M., Okuda, N., Watanabe, C. and Iwatani, Y. (2006) Association between the Severity of Hashimoto’s Disease and the Functional +874A/T Polymorphism in the Interferon-γ Gene. Endocrine Journal, 53, 473-478.
https://doi.org/10.1507/endocrj.K06-015
[22]
Laguila Visentainer, J.E., Lieber, S.R., Lopes Persoli, L.B., Dutra Marques, S.B., Vigorito, A.C., Penteado Aranha, F.J., de Brito Eid, K.A., Oliveira, G.B., Martins Miranda, E.C., Bragotto, L. and de Souza, C.A. (2005) Relationship between Cytokine Gene Polymorphisms and Graft-versus-Host Disease after Allogenetic Stem ceLl Transplantation in a Brazilian Population. Cytokine, 32, 171-177.
https://doi.org/10.1016/j.cyto.2005.09.002
[23]
Matos, G.I., Covas, C.J., Bittar, R.C., Gomes-Silva, A., Marques, F., Maniero, V.C., Amato, V.S., Oliveira-Neto, M.P., Mattos, M.S., Pirmez, C., Sampaio, E.P., Moraes, M.O. and Da-Cruz, A.M. (2007) IFNG +874T/A Polymorphism Is Not Associated with American Tegumentary Leishmaniasis Susceptibility But Can Influence Leishmania Induced IFN-γ Production. BMC Infectious Diseases, 7, Article No. 33.
https://doi.org/10.1186/1471-2334-7-33
[24]
Visentainer, J.E., Sell, A.M., Silva, G.C., Cavichioli, A.D.G., Franceschi, D.S.A., Lieber, S.R. and Souza, C.A. (2008) TNF, IFNG, IL6, IL10 and TGFB1 Gene Polymorphism in South and Southeast Brazil. International Journal of Immunogenetics, 35, 287-293. https://doi.org/10.1111/j.1744-313X.2008.00778.x
[25]
Rekha, P.L., Ishaq, M. and Valluri, V. (2006) A Differential Association of Interferon-γ High-Producing Allele T and Low-Producing Allele A (+874 A/T) with Hashimoto’s Thyroiditis and Graves’ Disease. Scandinavian Journal of Immunology, 64, 438-443. https://doi.org/10.1111/j.1365-3083.2006.01834.x
[26]
Amim, L.H., Pacheco, A.G., Fonseca-Costa, J., et al. (2008) Role of IFN-γ +874 T/A Single Nucleotide Polymorphism in the Tuberculosis Outcome among Brazilians Subjects. Molecular Biology Reports, 35, 563-566.
https://doi.org/10.1007/s11033-007-9123-1
[27]
Neves Ede, S., Curi, A.L., Albuquerque, M.C., Palhano-Silva, C.S., Silva, L.B., Bueno, W.F., et al. (2012) Genetic Polymorphism for IFNγ +874T/A in Patients with Acute Toxoplasmosis. Revista da Sociedade Brasileira de Medicina Tropical, 45, 757-760.
https://doi.org/10.1590/S0037-86822012000600020
[28]
Hussein, Y.M., Ahmad, A.S., Ibrahem, M.M., et al. (2009) Interferon γ Gene Polymorphism as a Biochemical Marker in Egyptian Atopic Patients. Journal of Investigational Allergology & Clinical Immunology, 19, 292-298.