全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

炎性细胞因子在糖尿病慢性创面中的作用机制研究进展
Research Progress on the Mechanism of Inflammatory Cytokines in Chronic Wounds of Diabetes

DOI: 10.12677/ACM.2023.1371537, PP. 11006-11013

Keywords: 糖尿病,慢性创面,炎性细胞因子
Diabetes
, Chronic Wounds, Inflammatory Cytokines

Full-Text   Cite this paper   Add to My Lib

Abstract:

糖尿病现已成为全球公认的严重公共卫生问题,临床表现为以高血糖为主要特征的代谢性疾病。长期高血糖导致心脑血管病变、肾脏病变、视网膜病变、周围神经血管病变、糖尿病足、糖尿病慢性创面等多种并发症,各类并发症中糖尿病慢性创面是最严重的并发症之一。炎性细胞因子是主要由免疫细胞生成的内源性多肽,可介导多种免疫反应。创面愈合期间由于炎症反应机体会产生大量炎性细胞因子,不同的细胞因子在炎症反应中发挥不同的生理作用,可表现为促进炎症进展或抑制炎症蔓延,细胞因子分泌的量决定创面愈合的时间周期。为了更加直观了解炎性细胞因子在糖尿病慢性创面中的作用机制,本文对炎性细胞因子在糖尿病慢性创面的相关作用机制作一综述,旨在为进一步研究提供新的观点。
Diabetes is now recognized as a serious public health problem worldwide, with the clinical mani-festations of metabolic diseases characterized by hyperglycemia. Long-term hyperglycemia leads to cardiovascular and cerebrovascular lesions, renal lesions, retinopathy, peripheral neurovascular lesions, diabetic foot, diabetic chronic wounds and other complications, among which chronic dia-betic wounds are one of the most serious complications. Inflammatory cytokines are endogenous peptides produced primarily by immune cells that mediate a variety of immune responses. During wound healing, due to the inflammatory response, the body produces a large number of inflamma-tory cytokines, and different cytokines play different physiological roles in the inflammatory re-sponse, which can be manifested as promoting the progression of inflammation or inhibiting the spread of inflammation, and the amount of cytokine secretion determines the time cycle of wound healing. In order to better understand the mechanism of inflammatory cytokines in chronic wounds of diabetes, this article reviews the relevant mechanisms of inflammatory cytokines in chronic wounds of diabetes, aiming to provide new insights for further research.

References

[1]  Kerner, W., et al. (2014) Definition, Classification and Diagnosis of Diabetes Mellitus. Experimental and Clinical Endo-crinology & Diabetes, 122, 384-386.
https://doi.org/10.1055/s-0034-1366278
[2]  Xiao, S., Xiao, C., Miao, Y., et al. (2021) Human Acellular Amniotic Membrane Incorporating Exosomes from Adipose-Derived Mesenchymal Stem Cells Promotes Diabetic Wound Healing. Stem Cell Research & Therapy, 12, Article No. 255.
https://doi.org/10.1186/s13287-021-02333-6
[3]  El Hage, R., Knippschild, U., Arnold, T., et al. (2022) Stem Cell-Based Therapy: A Promising Treatment for Diabetic Foot Ulcer. Biomedicines, 10, Article No. 1507.
https://doi.org/10.3390/biomedicines10071507
[4]  Lim, J.Z., Ng, N.S. and Thomas, C. (2017) Prevention and Treatment of Diabetic Foot Ulcers. Journal of the Royal Society of Medicine, 110, 104-109.
https://doi.org/10.1177/0141076816688346
[5]  Gurtner, G.C., Werner, S., Barrandon, Y., et al. (2008) Wound Repair and Regeneration. Nature, 453, 314-321.
https://doi.org/10.1038/nature07039
[6]  Hou, L., Zhang, X. and Du, H. (2023) Advances in Mesenchymal Stro-mal Cells and Nanomaterials for Diabetic Wound Healing. Diabetes/Metabolism Research and Reviews, 39, e3638.
https://doi.org/10.1002/dmrr.3638
[7]  Deng, P., Liang, H., Wang, S., et al. (2022) Combined Metabolomics and Network Pharmacology to Elucidate the Mechanisms of Dracorhodin Perchlorate in Treating Diabetic Foot Ulcer Rats. Frontiers in Pharmacology, 13, Article ID: 1038656.
https://doi.org/10.3389/fphar.2022.1038656
[8]  Khalid, A., Nadeem, T., Khan, M., et al. (2022) In Vitro Evaluation of Immunomodulatory, Anti-Diabetic, and Anti-Cancer Molecu-lar Mechanisms of Tribulus terrestris Extracts. Scientific Reports, 12, Article No. 22478.
https://doi.org/10.1038/s41598-022-26742-6
[9]  Prado, T., Morari, J. and Araújo, E. (2023) Molecular and Mor-phological Alterations in Uninjured Skin of Streptozotocin-Induced Diabetic Mice. Brazilian Journal of Medical and Bi-ological Research, 56, e12212.
https://doi.org/10.1590/1414-431x2023e12212
[10]  Littig, J., Moellmer, R., Estes, A., et al. (2022) Increased Pop-ulation of CD40+ Fibroblasts Is Associated with Impaired Wound Healing and Chronic Inflammation in Diabetic Foot Ulcers. Journal of Clinical Medicine, 11, Article No. 6335.
https://doi.org/10.3390/jcm11216335
[11]  Kolumam, G., Wu, X., Lee, W., et al. (2017) IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice. PLOS ONE, 12, e0170639.
https://doi.org/10.1371/journal.pone.0170639
[12]  Lampropoulou, I., Stangou, M., Papagianni, A., et al. (2014) TNF-α and Microalbuminuria in Patients with Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2014, Article ID: 394206.
https://doi.org/10.1155/2014/394206
[13]  Zhang, X., Dai, J., Li, L., et al. (2017) NLRP3 Inflammasome Expression and Signaling in Human Diabetic Wounds and in High Glucose Induced Macrophages. Journal of Diabetes Research, 2017, Article ID: 5281358.
https://doi.org/10.1155/2017/5281358
[14]  Moura, L., Silva, L., Leal, E., et al. (2013) Neurotensin Modulates the Migratory and Inflammatory Response of Macrophages under Hyperglycemic Conditions. BioMed Research Interna-tional, 2013, Article ID: 941764.
https://doi.org/10.1155/2013/941764
[15]  Brandner, J., Zacheja, S., Houdek, P., et al. (2008) Expression of Matrix Metalloproteinases, Cytokines, and Connexins in Diabetic and Nondiabetic Human Keratinocytes before and after Trans-plantation into an ex Vivo Wound-Healing Model. Diabetes Care, 31, 114-120.
https://doi.org/10.2337/dc07-1304
[16]  Ao, X., Yan, H., Huang, M., et al. (2023) Lavender Essential Oil Acceler-ates Lipopolysaccharide-Induced Chronic Wound Healing by Inhibiting Caspase-11-Mediated Macrophage Pyroptosis. The Kaohsiung Journal of Medical Sciences, 39, 511-521.
https://doi.org/10.1002/kjm2.12654
[17]  Liu, R., Luo, Q., You, W., et al. (2018) MicroRNA-106 Attenuates Hyperglycemia-Induced Vascular Endothelial Cell Dysfunction by Targeting HMGB1. Gene, 677, 142-148.
https://doi.org/10.1016/j.gene.2018.07.063
[18]  Salehi, M., Amiri, S., Ilghari, D., et al. (2023) The Remarkable Roles of the Receptor for Advanced Glycation End Products (RAGE) and Its Soluble Isoforms in COVID-19: The Importance of RAGE Pathway in the Lung Injuries. Indian Journal of Clinical Bi-ochemistry: IJCB, 38, 159-171.
https://doi.org/10.1007/s12291-022-01081-5
[19]  Mees, M., Boone, F., Bouwen, T., et al. (2022) Glycyrrhizin-Based Hydrogels Accelerate Wound Healing of Normoglycemic and Diabetic Mouse Skin. Pharmaceutics, 15, Article No. 27.
https://doi.org/10.3390/pharmaceutics15010027
[20]  Krzyszczyk, P., Kang, H., Kumar, S., et al. (2020) Anti-Inflammatory Effects of Haptoglobin on LPS-Stimulated Macrophages: Role of HMGB1 Signaling and Implications in Chronic Wound Healing. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 28, 493-505.
https://doi.org/10.1111/wrr.12814
[21]  Dhall, S., Wijesinghe, D., Karim, Z., et al. (2015) Arachidonic Ac-id-Derived Signaling Lipids and Functions in Impaired Healing. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 23, 644-656.
https://doi.org/10.1111/wrr.12337
[22]  Ganesh, K., Das, A., Dickerson, R., et al. (2012) Prostaglandin E? Induces Oncostatin M Expression in Human Chronic Wound Macrophages through Axl Receptor Tyrosine Kinase Pathway. Journal of Immunology (Baltimore, Md: 1950), 189, 2563-2573.
https://doi.org/10.4049/jimmunol.1102762
[23]  Cheng, H., Huang, H., Guo, Z., et al. (2021) Role of Prostaglandin E2 in Tissue Repair and Regeneration. Theranostics, 11, 8836-8854.
https://doi.org/10.7150/thno.63396
[24]  Nor Azlan, A., Katas, H., Mohamad Zin, N., et al. (2021) Dual Action Gels Containing DsiRNA Loaded Gold Nanoparticles: Augmenting Diabetic Wound Healing by Promoting Angiogenesis and Inhibiting Infection. European Journal of Phar-maceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV, 169, 78-90.
https://doi.org/10.1016/j.ejpb.2021.09.007
[25]  Syeda, M., Jing, X., Mirza, R., et al. (2012) Prosta-glandin Transporter Modulates Wound Healing in Diabetes by Regulating Prostaglandin-Induced Angiogenesis. The American Journal of Pathology, 181, 334-346.
https://doi.org/10.1016/j.ajpath.2012.03.012
[26]  Ip, W., Hoshi, N., Shouval, D., et al. (2017) Anti-Inflammatory Effect of IL-10 Mediated by Metabolic Reprogramming of Macrophages. Science (New York, NY), 356, 513-519.
https://doi.org/10.1126/science.aal3535
[27]  Roy, R., Zayas, J., Mohamed, M., et al. (2022) IL-10 Dysregulation Underlies Chemokine Insufficiency, Delayed Macrophage Response, and Impaired Healing in Diabetic Wounds. The Journal of Investigative Dermatology, 142, 692- 704.e14.
https://doi.org/10.1016/j.jid.2021.08.428
[28]  Sheng, W., Song, Q., Su, X., et al. (2023) Sodium alginate/Gelatin Hydrogels Loaded with Adipose-Derived Mesenchymal Stem Cells Promote Wound Healing in Diabetic Rats. Journal of Cosmetic Dermatology, 22, 1670-1679.
https://doi.org/10.1111/jocd.15631
[29]  Han, S., Chae, D. and Kim, S. (2022) Dual CXCR4/IL-10 Gene-Edited Human Amniotic Mesenchymal Stem Cells Exhibit Robust Therapeutic Properties in Chronic Wound Healing. Interna-tional Journal of Molecular Sciences, 23, Article No. 15338.
https://doi.org/10.3390/ijms232315338
[30]  Mi, Q., Rivière, B., Clermont, G., et al. (2007) Agent-Based Model of Inflammation and Wound Healing: Insights into Diabetic Foot Ulcer Pathology and the Role of Transforming Growth Factor-beta1. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 15, 671-682.
https://doi.org/10.1111/j.1524-475X.2007.00271.x
[31]  Breder, J., Pires, A., Azevedo, F., et al. (2020) Enhance-ment of Cellular Activity in Hyperglycemic Mice Dermal Wounds Dressed with Chitosan-Alginate Membranes. Brazili-an Journal of Medical and Biological Research, 53, e8621.
https://doi.org/10.1590/1414-431x20198621
[32]  Liu, C., Rinderknecht, H., Histing, T., et al. (2022) Establishment of an in Vitro Scab Model for Investigating Different Phases of Wound Healing. Bioengineering (Basel, Switzerland), 9, Article No. 191.
https://doi.org/10.3390/bioengineering9050191
[33]  Liarte, S., Bernabé-García, á., Rodríguez-Valiente, M., et al. (2023) Amniotic Membrane Restores Chronic Wound Features to Normal in a Keratinocyte TGF-β-Chronified Cell Model. International Journal of Molecular Sciences, 24, Article No. 6210.
https://doi.org/10.3390/ijms24076210
[34]  Zhou, L., Liu, N., Feng, L., et al. (2022) Multifunctional Electrospun Asymmetric Wettable Membrane Containing Black Phosphorus/Rg1 for Enhancing Infected Wound Healing. Bioengi-neering & Translational Medicine, 7, e10274.
https://doi.org/10.1002/btm2.10274
[35]  Zhang, Y., Wang, Y., Zeng, L., et al. (2022) Amphibian-Derived Peptide Homodimer OA-GL17d Promotes Skin Wound Regeneration through the miR-663a/TGF-β1/Smad Axis. Burns & Trauma, 10, tkac032.
https://doi.org/10.1093/burnst/tkac032
[36]  Pakyari, M., Farrokhi, A., Maharlooei, M., et al. (2013) Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing. Advances in Wound Care, 2, 215-224.
https://doi.org/10.1089/wound.2012.0406
[37]  Lichtman, M., Otero-Vinas, M. and Falanga, V. (2016) Transform-ing Growth Factor Beta (TGF-β) Isoforms in Wound Healing and Fibrosis. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 24, 215-222.
https://doi.org/10.1111/wrr.12398
[38]  Sivaraj, D., Noishiki, C., Kosaric, N., et al. (2023) Nitric Oxide-Releasing Gel Accelerates Healing in a Diabetic Murine Splinted Excisional Wound Model. Frontiers in Medicine, 10, Article ID: 1060758.
https://doi.org/10.3389/fmed.2023.1060758
[39]  Ehnert, S., Baur, J., Schmitt, A., et al. (2010) TGF-β1 as Possible Link between Loss of Bone Mineral Density and Chronic Inflammation. PLOS ONE, 5, e14073.
https://doi.org/10.1371/journal.pone.0014073
[40]  Abou El-Ezz, D., Abdel-Rahman, L., Al-Farhan, B., et al. (2022) Enhanced in Vivo Wound Healing Efficacy of a Novel Hydrogel Loaded with Copper(II) Schiff Base Quinoline Complex (CuSQ) Solid Lipid Nanoparticles. Pharmaceuticals (Basel, Switzerland), 15, Article No. 978.
https://doi.org/10.3390/ph15080978

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133