全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nrf2信号通路在缺血性脑卒中的作用及研究进展
The Role and Research Progress of Nrf2 Signaling Pathway in Ischemic Stroke

DOI: 10.12677/ACM.2023.1371519, PP. 10879-10885

Keywords: 缺血性脑卒中,Keap1/Nrf2,氧化应激,炎症反应
Ischemic Stroke
, Keap1/Nrf2, Oxidative Stress, Inflammation

Full-Text   Cite this paper   Add to My Lib

Abstract:

脑卒中患者中缺血性脑卒中占80%,具有高致残率及致死率,严重影响患者的生活质量,造成了严重的经济负担及社会负担。缺血性脑卒中是由于短时间内脑组织局部供血动脉血流减少或完全中断,导致缺血区域脑组织缺血、缺氧,造成不可逆的神经元损伤,损伤的程度取决于缺血的持续时间、严重程度和部位。研究显示,缺血性脑卒中的病理生理机制包括:局部脑血管低灌注、兴奋性神经毒性、氧化应激、血脑屏障破坏、微血管损伤、炎症反应、以及神经细胞和内皮细胞凋亡等一系列复杂的缺血级联反应。核因子E2相关因子2 (Nrf2)是内源性抗氧化防御的主要调节因子之一,在缺氧、氧化应激或炎症反应发生时,Nrf2与Keap1因子结合,调控大部分下游因子,发挥抗细胞凋亡、减轻炎症损伤、降低钙过载、抗氧化应激等多种作用,发挥维持线粒体稳态、保护脑组织损伤等作用。现就Nrf2信号通路在缺血性脑卒中的作用、研究进展及其激动剂在缺血性脑卒中的作用进行简要综述。
Ischemic stroke accounts for 80% in stroke patients, which has a high rate of disability and fatality. Ischemic stroke seriously affects the quality of life of patients, and caused serious economic and so-cial burdens. Ischemic stroke was due to the reduction or complete interruption of the blood flow of the local blood supply arteries of the brain tissue in a short period of time, resulting in ischemia and hypoxia of the brain tissue in the ischemic area, which led to irreversible neuronal damage. The degree of damage depends on the duration of ischemia, severity and location. Studies had shown that the pathophysiological mechanisms of ischemic stroke include: regional cerebral vascular hy-poperfusion, excitotoxicity, oxidative stress, blood-brain barrier dysfunction, microvascular injury, inflammatory response, and apoptosis of nerve cells and endothelial cells. Nuclear factor E2-related factor 2 (Nrf2) was one of the main regulators of endogenous antioxidant defense. When hypoxia, oxidative stress or inflammatory response occurs, Nrf2 combines with Keap1 factor to regulate downstream factors and play an anti-oxidative role. Nrf2 signaling pathway played a role of an-ti-apoptosis, reducing inflammatory damage, reducing calcium overload, anti-oxidative stress and other functions, maintaining mitochondrial homeostasis and protecting brain tissue. This article reviews the role of Nrf2 signaling pathway in ischemic stroke, research progress and Nrf2 agonists in ischemic stroke.

References

[1]  Liu, D., Wang, H., Zhang, Y. and Zhang, Z. (2020) Protective Effects of Chlorogenic Acid on Cerebral Ische-mia/Reperfusion Injury Rats by Regulating Oxidative Stress-Related Nrf2 Pathway. Drug Design, Development and Therapy, 14, 51-60.
https://doi.org/10.2147/DDDT.S228751
[2]  王陇德, 彭斌, 张鸿祺, 等. 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19(2): 136-144.
[3]  陈壮壮, 李国忠. COVID-19相关脑梗死的临床特征及其机制的研究进展[J]. 卒中与神经疾病, 2021, 28(4): 447-450.
[4]  张雍闯, 白艳杰, 王岩, 等. 新冠肺炎诱导缺血性脑卒中机制疗法的研究进展[J/OL]. 沈阳药科大学学报: 1-9, 2023-05-23.
https://doi.org/10.14066/j.cnki.cn21-1349/r.2022.0956
[5]  Orellana-Urzúa, S., Rojas, I., Líbano, L. and Rodrigo, R. (2020) Pathophysiology of Ischemic Stroke: Role of Oxidative Stress. Current Pharmaceutical Design, 26, 4246-4260.
https://doi.org/10.2174/1381612826666200708133912
[6]  Wang, L., Zhang, X., Xiong, X., et al. (2022) Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants, 11, Article 2377.
https://doi.org/10.3390/antiox11122377
[7]  Zhao, Y., Zhang, X., Chen, X. and Wei, Y. (2022) Neuronal Injuries in Cerebral Infarction and Ischemic Stroke: From Mechanisms to Treatment (Review). International Journal of Molecu-lar Medicine, 49, Article No. 15.
https://doi.org/10.3892/ijmm.2021.5070
[8]  Suzuki, H., Kanamaru, H., Kawakita, F., Asada, R., Fujimoto, M. and Shiba, M. (2021) Cerebrovascular Pathophysiology of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hem-orrhage. Histology & Histopathology, 36, 143-158.
[9]  Liu, Q., Gao, Y. and Ci, X. (2019) Role of Nrf2 and Its Acti-vators in Respiratory Diseases. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 7090534.
https://doi.org/10.1155/2019/7090534
[10]  Ivanciuc, T., Patrikeev, I., Qu, Y., et al. (2023) Micro-CT Features of Lung Consolidation, Collagen Deposition and Inflammation in Experimental RSV Infection Are Aggravated in the Ab-sence of Nrf2. Viruses, 15, Article 1191.
https://doi.org/10.3390/v15051191
[11]  Dinkova-Kostova, A.T. and Copple, I.M. (2023) Advances and Challenges in Therapeutic Targeting of NRF2. Trends in Pharmacological Sciences, 44, 137-149.
https://doi.org/10.1016/j.tips.2022.12.003
[12]  George, M., Tharakan, M., Culberson, J., Reddy, A.P. and Reddy, P.H. (2022) Role of Nrf2 in Aging, Alzheimer’s and Other Neurodegenerative Diseases. Ageing Research Reviews, 82, Article ID: 101756.
https://doi.org/10.1016/j.arr.2022.101756
[13]  童海达, 王佳茗, 宋英. Keap1-Nrf2-ARE在机体氧化应激损伤中的防御作用[J]. 癌变?畸变?突变, 2013, 25(1): 71-75.
[14]  Kobayashi, A., Kang, M.I., Okawa, H., et al. (2004) Ox-idative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase to Regulate Proteasomal Degradation of Nrf2. Molecular and Cellular Biology, 24, 7130-7139.
https://doi.org/10.1128/MCB.24.16.7130-7139.2004
[15]  Nguyen, T., Nioi, P. and Pickett, C.B. (2009) The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress. Journal of Biological Chemistry, 284, 13291-13295.
https://doi.org/10.1074/jbc.R900010200
[16]  Farina, M., Vieira, L.E., Buttari, B., Profumo, E. and Saso, L. (2021) The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules, 26, Article 5001.
https://doi.org/10.3390/molecules26165001
[17]  Tu, W., Wang, H., Li, S., Liu, Q. and Sha, H. (2019) The An-ti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases. Aging and Disease, 10, 637-651.
https://doi.org/10.14336/AD.2018.0513
[18]  Saha, S., Buttari, B., Panieri, E., Profumo, E. and Saso, L. (2020) An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules, 25, Article 5474.
https://doi.org/10.3390/molecules25225474
[19]  Vidale, S., Consoli, A., Arnaboldi, M. and Consoli, D. (2017) Postischemic Inflammation in Acute Stroke. Journal of Clinical Neurology, 13, 1-9.
https://doi.org/10.3988/jcn.2017.13.1.1
[20]  Nedergaard, M. and Dirnagl, U. (2005) Role of Glial Cells in Cerebral Ischemia. GLIA, 50, 281-286.
https://doi.org/10.1002/glia.20205
[21]  Chouchani, E.T., Pell, V.R., Gaude, E., et al. (2014) Ischaemic Accumula-tion of Succinate Controls Reperfusion Injury through Mitochondrial ROS. Nature, 515, 431-435.
https://doi.org/10.1038/nature13909
[22]  Hardingham, G.E. and Lipton, S.A. (2011) Regulation of Neuronal Oxi-dative and Nitrosative Stress by Endogenous Protective Pathways and Disease Processes. Antioxidants & Redox Signal-ing, 14, 1421-1424.
https://doi.org/10.1089/ars.2010.3573
[23]  Sajadimajd, S. and Khazaei, M. (2018) Oxidative Stress and Cancer: The Role of Nrf2. Current Cancer Drug Targets, 18, 538-557.
https://doi.org/10.2174/1568009617666171002144228
[24]  Liu, L., Locascio, L.M. and Doré, S. (2019) Critical Role of Nrf2 in Experimental Ischemic Stroke. Frontiers in Pharmacology, 10, Article 153.
https://doi.org/10.3389/fphar.2019.00153
[25]  Meng, H., Guo, J., Wang, H., Yan, P., Niu, X. and Zhang, J. (2014) Erythropoietin Activates Keap1-Nrf2/ARE Pathway in Rat Brain after Ischemia. International Journal of Neuroscience, 124, 362-368.
https://doi.org/10.3109/00207454.2013.848439
[26]  Takagi, T., Kitashoji, A., Iwawaki, T., et al. (2014) Temporal Activation of Nrf2 in the Penumbra and Nrf2 Activator-Mediated Neuroprotection in Ischemia-Reperfusion Injury. Free Radical Biology and Medicine, 72, 124-133.
https://doi.org/10.1016/j.freeradbiomed.2014.04.009
[27]  Miao, Y., Qiu, Y., Lin, Y., Miao, Z., Zhang, J. and Lu, X. (2011) Protection by Pyruvate against Glutamate Neurotoxicity Is Mediated by Astrocytes through a Glutathi-one-Dependent Mechanism. Molecular Biology Reports, 38, 3235-3242.
https://doi.org/10.1007/s11033-010-9998-0
[28]  Barreto, G., White, R.E., Ouyang, Y., Xu, L. and Giffard, R.G. (2011) Astrocytes: Targets for Neuroprotection in Stroke. Central Nervous System Agents in Medicinal Chemistry, 11, 164-173.
https://doi.org/10.2174/187152411796011303
[29]  Liu, Q., Jin, Z., Xu, Z., et al. (2019) Antioxidant Effects of Ginkgolides and Bilobalide against Cerebral Ischemia Injury by Activating the Akt/Nrf2 Pathway in Vitro and in Vivo. Cell Stress and Chaperones, 24, 441-452.
https://doi.org/10.1007/s12192-019-00977-1
[30]  Alfieri, A., Srivastava, S., Siow, R., et al. (2013) Sulforaphane Preconditioning of the Nrf2/HO-1 Defense Pathway Protects the Cerebral Vasculature against Blood-Brain Barrier Dis-ruption and Neurological Deficits in Stroke. Free Radical Biology and Medicine, 65, 1012-1022.
https://doi.org/10.1016/j.freeradbiomed.2013.08.190
[31]  Sun, Y., Yang, T., Leak, R.K., Chen, J. and Zhang, F. (2017) Preventive and Protective Roles of Dietary Nrf2 Activators against Central Nervous System Diseases. CNS & Neurological Disorders—Drug Targets, 16, 326-338.
https://doi.org/10.2174/1871527316666170102120211
[32]  Wu, J., Li, Q., Wang, X., et al. (2013) Neuroprotec-tion by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway. PLOS ONE, 8, e59843.
https://doi.org/10.1371/journal.pone.0059843
[33]  Gopal, S., Mikulskis, A., Gold, R., Fox, R.J., Dawson, K.T. and Amaravadi, L. (2017) Evidence of Activation of the Nrf2 Pathway in Multiple Sclerosis Patients Treated with De-layed-Release Dimethyl Fumarate in the Phase 3 DEFINE and CONFIRM Studies. Multiple Sclerosis Journal, 23, 1875-1883.
https://doi.org/10.1177/1352458517690617
[34]  Yan, N., Xu, Z., Qu, C. and Zhang, J. (2021) Dime-thyl Fumarate Improves Cognitive Deficits in Chronic Cerebral Hypoperfusion Rats by Alleviating Inflammation, Oxida-tive Stress, and Ferroptosis via NRF2/ARE/NF-κB Signal Pathway. International Immunopharmacology, 98, Article ID: 107844.
https://doi.org/10.1016/j.intimp.2021.107844

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133