全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

糖尿病慢性骨骼肌损害发病机制的研究进展
Study Progress on the Pathogenesis of Skeletal Muscle Damage in the Diabetes Mellitus

DOI: 10.12677/ACM.2023.1361238, PP. 8859-8865

Keywords: 糖尿病,骨骼肌,肌病
Diabetes Mellitus
, Skeletal Muscle, Myopathy

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨骼肌是胰岛素刺激下葡萄糖摄取的核心代谢组织,负责人体高达85%的葡萄糖代谢,同时又是胰岛素抵抗的主要部位。当机体长期处于高血糖时,肌肉会受到一定程度的损害,称为肌病,而肌肉的损害反过来又会加重胰岛素的抵抗,如此形成恶性循环。糖尿病患者骨骼肌损害隐匿,易被忽视,但却对葡萄糖代谢有着重要影响,本文就糖尿病骨骼肌损害发病机制的研究进展进行综述,为糖尿病患者血糖控制及预防相关并发症提供依据。
Skeletal muscle is the core metabolic tissue of glucose uptake stimulated by insulin, which is re-sponsible for up to 85% of glucose metabolism in the human body, and is also the main part of insu-lin resistance. When the body is in hyperglycemia for a long time, muscle will be damaged to a cer-tain extent, which is called myopathy, and muscle damage in turn will aggravate insulin resistance, thus forming a vicious circle. Skeletal muscle damage in patients is hidden and easy to be ignored, but it has an important impact on glucose metabolism. This paper reviews progress on the patho-genesis of skeletal muscle damage in the diabetes mellitus, so as to provide basis for blood glucose control and prevention of related complications in patients with diabetes.

References

[1]  Zheng, L.F., Chen, P.J., Zhou, Y.Z., et al. (2017) [Fat Deposition in Skeletal Muscle and Its Regulation]. Acta physiologica Sinica, 69, 344-350. (In Chinese)
[2]  Petersmann, A., Müller-Wieland, D., Müller, U.A., et al. (2019) Definition, Classification and Diagnosis of Diabetes Mellitus. Experimental and Clinical Endocrinology & Diabetes, 127, S1-S7.
https://doi.org/10.1055/a-1018-9078
[3]  Lovic, D., Piperidou, A., Zografou, I., et al. (2020) The Growing Epi-demic of Diabetes Mellitus. Current Vascular Pharmacology, 18, 104-109.
https://doi.org/10.2174/1570161117666190405165911
[4]  Cole, J.B. and Florez, J.C. (2020) Genetics of Diabe-tes Mellitus and Diabetes Complications. Nature Reviews Nephrology, 16, 377-390.
https://doi.org/10.1038/s41581-020-0278-5
[5]  Hernandez-Ochoa, E.O., Llanos, P. and Lanner, J.T. (2017) The Underlying Mechanisms of Diabetic Myopathy. Journal of Diabetes Research, 2017, Article ID: 7485738.
https://doi.org/10.1155/2017/7485738
[6]  Wagemann, J., Keller, S., Noriega, M.L.M., Stenzel, W., Schneider, U. and Krusche, M. (2022) A New Therapeutic Approach with Tocilizumab in a 39-Year-Old Patient with Recurrent Dia-betic Myonecrosis. Modern Rheumatology Case Reports, 6, 59-63.
https://doi.org/10.1093/mrcr/rxab016
[7]  Gupta, S., Goyal, P., Sharma, P., Soin, P. and Kochar, P.S. (2018) Re-current Diabetic Myonecrosis—An Under-Diagnosed Cause of Acute Painful Swollen Limb in Long Standing Diabetics. Annals of Medicine and Surgery, 35, 141-145.
https://doi.org/10.1016/j.amsu.2018.09.003
[8]  Ghantarchyan, H.H., Gupta, S. and Arabian, S. (2023) An Ab-normal Case of Diabetic Myonecrosis: A Case Report and Review of Literature. Cureus, 15, e36050.
https://doi.org/10.7759/cureus.36050
[9]  Almurdhi, M.M., Reeves, N.D., Bowling, F.L., et al. (2017) Distal Lower Limb Strength Is Reduced in Subjects with Impaired Glucose Tolerance and Is Related to Elevated Intramuscular Fat Level and Vitamin D Defi-ciency. Diabetic Medicine, 34, 356-363.
https://doi.org/10.1111/dme.13163
[10]  Hirata, Y., Nomura, K., Senga, Y., et al. (2019) Hyperglycemia Induces Skeletal Muscle Atrophy via a WWP1/KLF15 axis. JCI Insight, 4, Article ID: 124952.
https://doi.org/10.1172/jci.insight.124952
[11]  Wang, L. and Shan, T. (2021) Factors Inducing Transdifferentiation of Myoblasts into Adipocytes. Journal of Cellular Physiology, 236, 2276-2289.
https://doi.org/10.1002/jcp.30074
[12]  Lee, Y.J., Kim, G.H., Park, S.I. and Lim, J.H. (2020) Down-Regulation of the Mitochondrial i-AAA Protease Yme1L Induces Muscle Atrophy via FoxO3a and Myostatin Activation. Journal of Cellular and Molecular Medicine, 24, 899- 909.
https://doi.org/10.1111/jcmm.14799
[13]  Narasimhulu, C.A. and Singla, D.K. (2021) BMP-7 Ameliorates Lipid Ac-cumulation Induced, Hmgb1 Initiated Pyroptosis Leading To Sarcopenia, Muscle Deterioration and Adverse Muscle Remodeling In Diabetes. Circulation, 144, A14193.
[14]  Langer, H.T. (2017) Master and Commander? FoxO’s Role in Muscle Atrophy. Journal of Physiology-London, 595, 4593-4594.
https://doi.org/10.1113/JP274554
[15]  Farup, J., Just, J., De Paoli, F., et al. (2021) Human Skeletal Muscle CD90 Fibro-Adipogenic Progenitors Are Associated with Muscle Degeneration in Type 2 Diabetic Patients. Cell Metabolism, 33, 2201-2214.
https://doi.org/10.1016/j.cmet.2021.10.001
[16]  Arcaro, C.A., Assis, R.P., Oliveira, J.O., et al. (2021) Phosphodiesterase 4 Inhibition Restrains Muscle Proteolysis in Diabetic Rats by Activating PKA and EPAC/Akt Effectors and Inhibiting FoxO Factors. Life Sciences, 278, Article ID: 119563.
https://doi.org/10.1016/j.lfs.2021.119563
[17]  Gumucio, J.P., Qasawa, A.H., Ferrara, P.J., et al. (2019) Reduced Mitochondrial Lipid Oxidation Leads to Fat Accumulation in Myosteatosis. The FASEB Journal, 33, 7863-7881.
https://doi.org/10.1096/fj.201802457RR
[18]  Reddy, S.S., Shruthi, K., Prabhakar, Y.K., Sailaja, G. and Reddy, G.B. (2018) Implication of Altered Ubiquitin- Proteasome System and ER Stress in the Muscle Atrophy of Diabetic Rats. Archives of Biochemistry and Biophysics, 639, 16-25.
https://doi.org/10.1016/j.abb.2017.12.015
[19]  Mahdy, M.A. (2018) Glycerol-Induced Injury as a New Model of Muscle Regeneration. Cell and Tissue Research, 374, 233-241.
https://doi.org/10.1007/s00441-018-2846-6
[20]  Cohen, S. (2020) Role of Calpains in Promoting Desmin Filaments Depolymerization and Muscle Atrophy. Biochimica et Biophys-ica Acta (BBA)—Molecular Cell Research, 1867, Article ID: 118788.
https://doi.org/10.1016/j.bbamcr.2020.118788
[21]  Romanello, V. and Sandri, M. (2021) The Connection between the Dynamic Remodeling of the Mitochondrial Network and the Regulation of Muscle Mass. Cellular and Molecular Life Sciences, 78, 1305-1328.
https://doi.org/10.1007/s00018-020-03662-0
[22]  Wagner, S., Manickam, R., Brotto, M. and Tipparaju, S.M. (2022) NAD+ Centric Mechanisms and Molecular Determinants of Skeletal Muscle Disease and Aging. Molecular and Cellular Biochemistry, 477, 1829-1848.
https://doi.org/10.1007/s11010-022-04408-1
[23]  Albers, P.H., Pedersen, A.J.T., Birk, J.B., et al. (2015) Human Muscle Fiber Type-Specific Insulin Signaling: Impact of Obesity and Type 2 Diabetes. Diabetes, 64, 485-497.
https://doi.org/10.2337/db14-0590
[24]  Monaco, C.M.F., Perry, C.G.R. and Hawke, T.J. (2017) Diabetic Myopa-thy: Current Molecular Understanding of This Novel Neuromuscular Disorder. Current Opinion in Neurology, 30, 545-552.
https://doi.org/10.1097/WCO.0000000000000479
[25]  Saliu, T.P., Kumrungsee, T., Miyata, K., et al. (2022) Comparative Study on Molecular Mechanism of Diabetic Myopathy in Two Different Types of Streptozotocin-Induced Diabetic Models. Life Sciences, 288, Article ID: 120183.
https://doi.org/10.1016/j.lfs.2021.120183
[26]  Baig, M.H., Jan, A.T., Rabbani, G., et al. (2017) Methylglyoxal and Advanced Glycation End Products: Insight of the Regulatory Machinery Affecting the Myogenic Program and of Its Modulation by Natural Compounds. Scientific Reports, 7, Article No. 5916.
https://doi.org/10.1038/s41598-017-06067-5
[27]  Chiu, C.-Y., Yang, R.-S., Sheu, M.-L., et al. (2016) Advanced Glycation End-Products Induce Skeletal Muscle Atrophy and Dysfunction in Diabetic Mice via a RAGE-Mediated, AMPK-down-Regulated, Akt Pathway. The Journal of Pathology, 238, 470-482.
https://doi.org/10.1002/path.4674
[28]  Mori, H., Kuroda, A., Araki, M., et al. (2017) Advanced Glycation End-Products Are a Risk for Muscle Weakness in Japanese Patients with Type 1 Diabetes. Journal of Diabetes Investi-gation, 8, 377-382.
https://doi.org/10.1111/jdi.12582
[29]  Mori, H., Kuroda, A., Ishizu, M., et al. (2019) Association of Accumulated Advanced Glycation End-Products with a High Prevalence of Sarcopenia and Dynapenia in Patients with Type 2 Diabe-tes. Journal of Diabetes Investigation, 10, 1332-1340.
https://doi.org/10.1111/jdi.13014
[30]  Henríquez-Olguín, C., Boronat, S., Cabello-Verrugio, C., Jaimovich, E., Hidalgo, E. and Jensen, T.E. (2019) The Emerging Roles of Nicotina-mide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxidants & Redox Signaling, 31, 1371-1410.
https://doi.org/10.1089/ars.2018.7678
[31]  Sanchez-Duarte, S., Marquez-Gamino, S., Montoya-Perez, R., et al. (2021) Nicorandil Decreases Oxidative Stress in Slow- and Fast-Twitch Muscle Fibers of Diabetic Rats by Improving the Glutathione System Functioning. Journal of Diabetes Investigation, 12, 1152-1161.
https://doi.org/10.1111/jdi.13513
[32]  Izzo, A., Massimino, E., Riccardi, G. and Pepa, G.D. (2021) A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients, 13, Article 183.
https://doi.org/10.1111/jdi.13513
[33]  Rahman, F.A. and Krause, M.P. (2020) PAI-1, the Plasminogen System and Skeletal Muscle. International Journal of Molecular Sciences, 21, Article 7066.
https://doi.org/10.3390/ijms21197066
[34]  Dziegala, M., Josiak, K., Kasztura, M., et al. (2018) Iron Deficiency as Energetic Insult to Skeletal Muscle in Chronic Diseases. Journal of Cachexia, Sarcopenia and Muscle, 9, 802-815.
https://doi.org/10.1002/jcsm.12314
[35]  Coleman, S.K., Rebalka, I.A., D’souza, D.M., et al. (2015) Skeletal Mus-cle as a Therapeutic Target for Delaying Type 1 Diabetic Complications. World Journal of Diabetes, 6, 1323-1336.
https://doi.org/10.4239/wjd.v6.i17.1323
[36]  Yell, P.C., Burns, D.K., Dittmar, E.G., White III, C.L. and Cai, C. (2018) Diffuse Microvascular C5b-9 Deposition Is a Common Feature in Muscle and Nerve Biopsies from Diabetic Pa-tients. Acta Neuropathologica Communications, 6, Article No. 11.
https://doi.org/10.1186/s40478-018-0512-6
[37]  Fujimaki, S., Matsumoto, T., Muramatsu, M., et al. (2022) The Endothelial Dll4-Muscular Notch2 Axis Regulates Skeletal Muscle Mass. Nature Metabolism, 4, 180-189.
https://doi.org/10.1038/s42255-022-00533-9
[38]  Kushnir, A., Wajsberg, B. and Marks, A.R. (2018) Ryanodine Receptor Dysfunction in Human Disorders. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1865, 1687-1697.
https://doi.org/10.1016/j.bbamcr.2018.07.011
[39]  Rebbeck, R.T., Essawy, M.M., Nitu, F.R., et al. (2017) High-Throughput Screens to Discover Small-Molecule Modulators of Ryanodine Receptor Calcium Release Channels. SlAS Discovery, 22, 176-186.
https://doi.org/10.1177/1087057116674312
[40]  Zalk, R. and Marks, A.R. (2017) Ca2+ Release Channels Join the ‘Resolution Revolution’. Trends in Biochemical Sciences, 42, 543-555.
https://doi.org/10.1016/j.tibs.2017.04.005
[41]  Oldfield, C.J., Moffatt, T.L., Dolinsky, V.W., et al. (2022) Sirtuin 3 Overexpression Preserves Maximal Sarco(endo)Plasmic Reticulum Calcium ATPase Activity in the Skeletal Muscle of Mice Subjected to High Fat—High Sucrose Feeding. Canadian Journal of Physiology and Pharmacology, 100, 361-370.
https://doi.org/10.1139/cjpp-2021-0587
[42]  Miller, S.G., Hafen, P.S. and Brault, J.J. (2019) Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy. International Journal of Molecular Sciences, 21, Article 88.
https://doi.org/10.3390/ijms21010088
[43]  Mack, D.L. (2017) Reversion to Embryonic Transcriptional Splicing Patterns May Underlie Diabetic Myopathy. Muscle Nerve, 56, 686-688.
https://doi.org/10.1002/mus.25745
[44]  Hulmi, J.J., Silvennoinen, M., Lehti, M., et al. (2012) Altered REDD1, Myostatin and Akt/mTOR/FoxO/MAPK Signaling in Streptozotocin-Induced Diabetic Muscle Atrophy. American Journal of Physiology Endocrinology and Metabolism, 302, E307-E315.
https://doi.org/10.1152/ajpendo.00398.2011
[45]  Yang, B., Sun, J., Yuan, Y. and Sun, Z. (2018) Effects of Atorvastatin on Autophagy in Skeletal Muscles of Diabetic Rats. Journal of Diabetes Investigation, 9, 753-761.
https://doi.org/10.1111/jdi.12789
[46]  Chen, H.J., Wang, C.C., Chan, D.C., et al. (2019) Adverse Effects of Acro-lein, a Ubiquitous Environmental Toxicant, on Muscle Regeneration and Mass. Journal of Cachexia, Sarcopenia and Muscle, 10, 165-176.
https://doi.org/10.1002/jcsm.12362
[47]  Gamberi, T., Magherini, F., Mannelli, M., et al. (2019) Role of Adiponec-tin in the Metabolism of Skeletal Muscles in Collagen VI-Related Myopathies. Journal of Molecular Medicine (JMM), 97,793-801.
https://doi.org/10.1007/s00109-019-01766-0
[48]  Okun, J.G., Rusu, P.M., Chan, A.Y., et al. (2021) Liver Ala-nine Catabolism Promotes Skeletal Muscle Atrophy and Hyperglycaemia in Type 2 Diabetes. Nature Metabolism, 3, 394-409.
https://doi.org/10.1038/s42255-021-00369-9
[49]  Fujimaki, S., Wakabayashi, T., Takemasa, T., et al. (2015) Dia-betes and Stem Cell Function. BioMed Research International, 2015, Article ID: 592915.
https://doi.org/10.1155/2015/592915
[50]  Surinlert, P., Thitiphatphuvanon, T., Khimmaktong, W., et al. (2021) Hyperglycemia Induced C2C12 Myoblast Cell Cycle Arrest and Skeletal Muscle Atrophy by Modulating Sirtuins Gene Expression in Rats. The Polish Journal of Veterinary Sciences, 24, 563-572.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133