|
基于圆孔光栅辅助微环谐振器的折射率传感研究
|
Abstract:
为了提高微环折射率传感器的灵敏度和品质因子,本文提出一种基于圆孔光栅辅助的微环谐振器。在该结构中由于同一种状态的光模式在不同的光路中产生模式劈裂而形成Fano共振现象,Fano共振的非对称线型光谱结构能够获得更高的消光比和品质因子,可以使该器件在进行折射率传感时对外界环境变化有非常好的响应。采用有限元法对结构进行设计和模拟仿真。仿真结果显示,所提结构的品质因子达到58,300,比传统微环谐振器提高7倍以上。
In order to improve the sensitivity and quality factor of the micro ring refractive index sensor, this paper proposes a micro ring reso-nator based on circular hole grating. In this structure, Fano resonance phenomenon is formed due to the mode splitting of light modes in different light paths in the same state. The asymmetric linear spectral structure of Fano resonance can obtain higher extinction ratio and quality factor, which can make the device have a very good response to the external environment changes when conducting refractive index sensing. Design and simulate the structure using finite element method. According to the simulation results, the quality factor of the proposed structure reaches 58,300, which is more than 7 times higher than that of the traditional micro ring resonator.
[1] | Wen, Y.J., Sun, Y., Deng, C.Y., et al. (2019) High Sensitivity and FOM Refractive Index Sensing Based on Fano Res-onance in All-Grating Racetrack Resonators. Optics Communications, 446, 141-146.
https://doi.org/10.1016/j.optcom.2019.04.068 |
[2] | Passaro, V.M.N., Loiacono, R., D’Amico, G., et al. (2008) De-sign of Bragg Grating Sensors Based on Submicrometer Optical Rib Waveguides in SOI. IEEE Sensors Journal, 8, 1603-1611. https://doi.org/10.1109/JSEN.2008.929068 |
[3] | Biswas, U. and Rakshit, J.K. (2020) Detection and Analysis of Hemoglobin Concentration in Blood with the Help of Photonic Crystal Based Micro Ring Resonator Struc-ture. Optical and Quantum Electronics, 52, Article Number 449.
https://doi.org/10.1007/s11082-020-02566-4 |
[4] | Zhang, W.F., Li, W.Z. and Yao, J.P. (2016) Optically Tunable Fano Resonance in a Grating-Based Fabry-Perot Cavity-Coupled Microring Resonator on Asilicon Chip. Optics Letters, 41, 2474-2477.
https://doi.org/10.1364/OL.41.002474 |
[5] | Zhu, B.B., Zhang, W.F., Pan, S.L., et al. (2019) High-Sensitivity In-stantaneous Microwave Frequency Measurement Based on a Silicon Photonic Integrated Fano Resonator. Journal of Lightwave Technology, 37, 2527-2533.
https://doi.org/10.1109/JLT.2018.2885224 |
[6] | Malitson, I.H. (1965) Interspecimen Comparison of the Refractive Index of Fused Silica. Journal of the Optical Society of America, 55, 1205-1209. https://doi.org/10.1364/JOSA.55.001205 |
[7] | Song, J.H., Kongnyuy, T.D., de Heyn, P., et al. (2020) Low-Loss Waveguide Bends by Advanced Shape for Photonic Integrated Circuits. Journal of Lightwave Technology, 38, 3273-3279. https://doi.org/10.1109/JLT.2020.2978420 |
[8] | Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., et al. (2012) Silicon Microring Resonators. Laser & Photonics Reviews, 6, 47-73. https://doi.org/10.1002/lpor.201100017 |
[9] | 陈颖, 高新贝, 许扬眉, 等. 光子晶体纳米梁侧耦合孔径啁啾光子晶体纳米梁腔结构的Fano共振传感机理[J]. 光学学报, 2019, 39(11): 297-303. |
[10] | 钱坤. 面向谐振式微光学陀螺的高Q平面光波导谐振腔研究[D]: [博士学位论文]. 太原: 中北大学, 2017. |
[11] | Tian, C.C., Zhang, H., Li, W.X., et al. (2020) Temperature Sensor of High-Sensitivity Based on Nested Ring Resonator by Vernier Effect. Optik, 204, Article ID: 164118. https://doi.org/10.1016/j.ijleo.2019.164118 |