|
带最大密度限制的Navier-Stokes方程的耗散测度值解
|
Abstract:
本文研究具有最大密度限制的可压Navier-Stokes方程,其中,最大密度限制是由一个奇性的压强项给定的。利用带有参数K的Brenner模型,我们构造了Navier-Stokes方程的逼近解。为了处理压强的奇性,引入一个逼近压强pθ,δ,其中θ,δ为逼近参数。当这些参数K,θ,δ→0时,我们证明逼近解收敛到Navier- Stokes方程的耗散测度值解。
This paper considers the compressible Navier-Stokes equation with maximum density constraint, where the maximum density constraint is imposed by a singular pressure term. Approximate solu-tions of the Navier-Stokes equation are constructed using the Brenner model with a parameter K. To deal with the singularity of pressure, an approximate pressure pθ,δ is introduced, where θ,δ are the approximate parameters. When K,θ,δ→0 , we show that the approximate solutions con-verge to the dissipative measure-valued solution of the Navier-Stokes equation.
[1] | Berthelin, F., Degond, P., Delitala, M. and Rascle, M. (2008) A Model for the Formation and Evolution of Traffic Jams. Archive for Rational Mechanics and Analysis, 187, 185-220. https://doi.org/10.1007/s00205-007-0061-9 |
[2] | Degond, P., Hua, J. and Navoret, L. (2011) Numerical Simula-tions of the Euler System with Congestion Constraint. Journal of Computational Physics, 230, 8057-8088. https://doi.org/10.1016/j.jcp.2011.07.010 |
[3] | Degond, P., Navoret, L., Bon, R. and Sanchez, D. (2010) Conges-tion in a Macroscopic Model of Self-Driven Particles Modeling Gregariousness. Journal of Statistical Physics, 138, 85-125. https://doi.org/10.1007/s10955-009-9879-x |
[4] | Degond, P. and Hua, J. (2013) Self-Organized Hydrody-namics with Congestion and Path Formation in Crowds. Journal of Computational Physics, 237, 299-319. https://doi.org/10.1016/j.jcp.2012.11.033 |
[5] | Di Perna, R.J. (1985) Measure-Valued Solutions to Conservation Laws. Archive for Rational Mechanics and Analysis, 88, 223-270. https://doi.org/10.1007/BF00752112 |
[6] | Di Perna, R.J. and Majda, A.J. (1987) Oscillations and Concentrations in Weak Solutions of the Incompressible Fluid Equa-tions. Communications in Mathematical Physics, 108, 667-689. https://doi.org/10.1007/BF01214424 |
[7] | Gwiazda, P. (2010) On Measure-Valued Solutions to a Two-Dimensional Gravity-Driven Avalanche Flow Model. Mathematical Methods in the Applied Sciences, 28, 2201-2223. https://doi.org/10.1002/mma.660 |
[8] | Neustupa, J. (1993) Meas-ure-Valued Solutions of the Euler and Navier-Stokes Equations for Compressible Barotropic Fluids. Mathematische Na-chrichten, 163, 217-227. https://doi.org/10.1002/mana.19931630119 |
[9] | Feireisl, E., Gwiazda, P., Gwiazda, A.?. and Wiedemann, E. (2016) Dissipative Measure-Valued Solutions to the Compressible Navier-Stokes System. Calculus of Variations and Partial Differential Equations, 55, Article No. 141.
https://doi.org/10.1007/s00526-016-1089-1 |
[10] | Prodi, G. (1959) Un teorema di unicita per le equazioni di Navier-Stokes. Annali di Matematica Pura ed Applicata, 48, 173-182. https://doi.org/10.1007/BF02410664 |
[11] | Serrin, J. (1963) The Initial Value Problem for the Navier-Stokes Equa-tion. In: Langer, R.E., Ed., Nonlinear Problems, University of Wisconsin Press, Madison, 69-98. |
[12] | Bianchini, R. and Perrin, C. (2021) Soft Congestion Approximation to the One-Dimensional Constrained Euler Equations. Nonlinearity, 34, 6901-6929. https://doi.org/10.1088/1361-6544/ac1e33 |
[13] | Perrin, C. and Zatorska, E. (2015) Free/congested Two-Phase Model from Weak Solutions to Multidimensional Compressible Navier-Stokes Equations. Communications in Partial Differential Equations, 40, 1558-1589.
https://doi.org/10.1080/03605302.2015.1014560 |
[14] | Perrin, C. and Saleh, K. (2022) Numerical Staggered Schemes for the Free-Congested Navier-Stokes Equations. SIAM Journal on Numerical Analysis, 60, 1824-1852. https://doi.org/10.1137/21M1436488 |
[15] | Ne?asová, ??., Novotny, A. and Roy, A. (2022) Compressible Na-vier-Stokes System with the Hard Sphere Pressure Law in an Exterior Domain. Zeitschrift für Angewandte Mathematik und Physik, 73, Article No. 197.
https://doi.org/10.1007/s00033-022-01809-6 |
[16] | 华嘉乐, 夏黎蓉. 最大密度限制下可压等熵欧拉系统含接触间断时可容许弱解的不唯一性[J]. 应用数学进展, 2022, 11(3): 1089-1106. https://doi.org/10.12677/aam.2022.113118 |
[17] | Brenner, H. (2005) Navier-Stokes Revisited. Physica A: Statistical Mechanics and Its Applications, 349, 60-132.
https://doi.org/10.1016/j.physa.2004.10.034 |
[18] | Feireisl, E., Luká?ová-Medvidová, M. and Mizerová, H. (2020) Convergence of Finite Volume Schemes for the Euler Equations via Dissipative Measure-Valued Solutions. Foundations of Computational Mathematics, 20, 923-966.
https://doi.org/10.1007/s10208-019-09433-z |
[19] | Pedregal, P. (1997) Parametrized Measures and Variational Prin-ciples. Progress in Nonlinear Differential Equations and Their Applications, Vol. 30, Birkh?user, Basel. https://doi.org/10.1007/978-3-0348-8886-8 |