%0 Journal Article
%T 带最大密度限制的Navier-Stokes方程的耗散测度值解
Dissipative Measure-Valued Solution of Na-vier-Stokes Equation with Maximum Density Constraint
%A 李婷婷
%A 华嘉乐
%J Advances in Applied Mathematics
%P 2263-2273
%@ 2324-8009
%D 2023
%I Hans Publishing
%R 10.12677/AAM.2023.125231
%X 本文研究具有最大密度限制的可压Navier-Stokes方程,其中,最大密度限制是由一个奇性的压强项给定的。利用带有参数K的Brenner模型,我们构造了Navier-Stokes方程的逼近解。为了处理压强的奇性,引入一个逼近压强pθ,δ,其中θ,δ为逼近参数。当这些参数K,θ,δ→0时,我们证明逼近解收敛到Navier- Stokes方程的耗散测度值解。
This paper considers the compressible Navier-Stokes equation with maximum density constraint, where the maximum density constraint is imposed by a singular pressure term. Approximate solu-tions of the Navier-Stokes equation are constructed using the Brenner model with a parameter K. To deal with the singularity of pressure, an approximate pressure pθ,δ is introduced, where θ,δ are the approximate parameters. When K,θ,δ→0 , we show that the approximate solutions con-verge to the dissipative measure-valued solution of the Navier-Stokes equation.
%K 可压Navier-Stokes方程,弱解,最大密度限制,耗散测度值解
Compressible Navier-Stokes Equation
%K Weak Solution
%K Maximum Density Constraint
%K Dissipative Measure-Valued Solution
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=65863