全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类不可压非牛顿Boussinesq方程组正则解的存在性
Existence of Regular Solution for a Class of Incompressible Non-Newton Boussinesq Equations

DOI: 10.12677/AAM.2023.124192, PP. 1855-1865

Keywords: 非牛顿流,Boussinesq方程组,奇异性,正则性
Non-Newtonian Flow
, Boussinesq Equation, Singularity, Regular Solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

在三维光滑有界区域中研究了奇异情况下的非牛顿Boussinesq方程组的周期初边值问题。应用Galerkin方法、Gronwall不等式、Aubin-Lions引理,并结合能量估计、紧性方法证明了外力项适当小的情况下,该方程组正则解的存在性。
The periodic initial boundary value problem of non-Newtonian Boussinesq equations in singular case is studied in three-dimensional smooth bounded domain. By using Galerkin method, Gronwall inequality, Aubin-Lions lemma, energy estimation and compactness method, the existence of regu-lar solutions for the system is proved when the external force term is appropriately small.

References

[1]  张能球. 几类流体力学方程组的解的适定性[D]: [博士学位论文]. 上海: 华东理工大学, 2021.
[2]  Majda, A.J., Bertozzi, A.L. and Ogawa, A. (2002) Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics. Ap-plied Mechanics Reviews, 55, B77-B78.
https://doi.org/10.1115/1.1483363
[3]  Pedlosky, J. (1897) Geophysical Fluid Dynamics. Springer, New York.
[4]  Ladyzhenskaya, O.A. (1969) The Mathematical Theory of Viscous Incom-pressible Flow. Gordon and Breach, New York.
[5]  Lions, J.L. (1969) Quelquesméthodes de résolution des probémes aux limites non lineáires. Dunod, Paris.
[6]  Bellout, H., Bloom, F. and Ne?as, J. (1994) Young Measure-Valued Solu-tions for Non-Newtonian Incompressible Fluids. Communications in Partial Differential Equations, 19, 1763-1803.
https://doi.org/10.1080/03605309408821073
[7]  Málek, J., Ne?as, J. and R??i?ka, M. (1993) On the Non-Newtonian Incompressible Fluids. Mathematical Models and Methods in Applied Sciences, 3, 35-63.
https://doi.org/10.1142/S0218202593000047
[8]  Frehse, J., Málek, J. and Steinhauer, M. (2000) On Existence Results for Fluids with Shear Dependent Viscosity-Unsteady Flows. Partial Differential Equations, Routledge, Oxford-shire, 121-129.
https://doi.org/10.1201/9780203744376-12
[9]  Málek, J., Ne?as, J. and R??i?ka, M. (2001) On Weak Solutions to a Class of Non-Newtonian Incomepressible Fluids in Bounded Three-Dimensional Domains: The Case p≥2. Advances in Differential Equations, 6, 257-302.
https://doi.org/10.57262/ade/1357141212
[10]  Boling, G. and Yadong, S. (2002) The Periodic Initial Value Prob-lem and Initial Value Problem for the Modified Boussinesq Approximation. Journal of Partial Differential Equations, 15, 57-71.
[11]  杨惠, 王长佳. 一类稳态不可压非牛顿Boussinesq方程组解的存在唯一性[J]. 吉林大学学报(理学版), 2019, 57(4): 753-761.
[12]  Necas, J., Málek, J., Rokyta, M., et al. (2019) Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman and Hall, London.
https://doi.org/10.1201/9780367810771

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133