%0 Journal Article %T 一类不可压非牛顿Boussinesq方程组正则解的存在性
Existence of Regular Solution for a Class of Incompressible Non-Newton Boussinesq Equations %A 刘琳 %A 王长佳 %J Advances in Applied Mathematics %P 1855-1865 %@ 2324-8009 %D 2023 %I Hans Publishing %R 10.12677/AAM.2023.124192 %X 在三维光滑有界区域中研究了奇异情况下的非牛顿Boussinesq方程组的周期初边值问题。应用Galerkin方法、Gronwall不等式、Aubin-Lions引理,并结合能量估计、紧性方法证明了外力项适当小的情况下,该方程组正则解的存在性。
The periodic initial boundary value problem of non-Newtonian Boussinesq equations in singular case is studied in three-dimensional smooth bounded domain. By using Galerkin method, Gronwall inequality, Aubin-Lions lemma, energy estimation and compactness method, the existence of regu-lar solutions for the system is proved when the external force term is appropriately small. %K 非牛顿流,Boussinesq方程组,奇异性,正则性
Non-Newtonian Flow %K Boussinesq Equation %K Singularity %K Regular Solution %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=64791