%0 Journal Article
%T 一类不可压非牛顿Boussinesq方程组正则解的存在性
Existence of Regular Solution for a Class of Incompressible Non-Newton Boussinesq Equations
%A 刘琳
%A 王长佳
%J Advances in Applied Mathematics
%P 1855-1865
%@ 2324-8009
%D 2023
%I Hans Publishing
%R 10.12677/AAM.2023.124192
%X 在三维光滑有界区域中研究了奇异情况下的非牛顿Boussinesq方程组的周期初边值问题。应用Galerkin方法、Gronwall不等式、Aubin-Lions引理,并结合能量估计、紧性方法证明了外力项适当小的情况下,该方程组正则解的存在性。
The periodic initial boundary value problem of non-Newtonian Boussinesq equations in singular case is studied in three-dimensional smooth bounded domain. By using Galerkin method, Gronwall inequality, Aubin-Lions lemma, energy estimation and compactness method, the existence of regu-lar solutions for the system is proved when the external force term is appropriately small.
%K 非牛顿流,Boussinesq方程组,奇异性,正则性
Non-Newtonian Flow
%K Boussinesq Equation
%K Singularity
%K Regular Solution
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=64791