|
关于双树度差下界的一个例子
|
Abstract:
如果图G由两个边不交的生成树的并组成,其中E(G)=E(T1)∪E(T2),且E(T1)∩E(T2)=?那么称图G是双树。本文证明存在一个双树G,对于G任意一个分解f=T1,T2而言(T1,T2是生成树),至少存在一个顶点v∈V(G),使得▏dT1(v)-dT2(v)▏≥2。
If the graph G contains two spanning trees such that the edges of spanning trees are disjoint. And E(G)=E(T1)∪E(T2) and E(T1)∩E(T2)=? , then we call the graph G is double tree. In this pa-per we prove that there exists a double tree graph G, for any decomposition f=T1,T2 (T1,T2 are spanning trees), there exists at least a vertex v∈V(G) such that ▏dT1(v)-dT2(v)▏≥2 .
[1] | Frank, A. (2011) Connections in Combinatorial Optimization. Oxford University Press, Oxford. |
[2] | Illingworth, F., Powierski, E., Scott, A. and Tamitegama, Y. (2012) Balancing Connected Colourings of Graphs. arxiv.org, 2205.04984. |
[3] | Nash-Williams, C.St.J.A. (1961) Edge-Disjoint Spanning Trees of Finite Graphs. Journal of the London Mathematical Society, 36, 445-450. https://doi.org/10.1112/jlms/s1-36.1.445 |
[4] | Tutte, W.T. (2004) On the Problem of Decomposing a Graph into n Connected Factors. Journal of the London Mathematical Society, 36, 221-230. https://doi.org/10.1112/jlms/s1-36.1.221 |
[5] | Florian, H. (2022) Globally Balancing Spanning Trees. arxiv.org, 2110.13726. |
[6] | Stein, M. (2006) Arboricity and Tree-Packing in Locally Finite Graphs. Journal of Combi-natorial Theory, Series B, 96, 302-312. https://doi.org/10.1016/j.jctb.2005.08.003 |
[7] | Bang-Jensen, J., Havet, F. and Yeo, A. (2016) The Complexity of Finding Arc-Disjoint Branching Flows. Discrete Applied Mathematics, 209, 16-26. https://doi.org/10.1016/j.dam.2015.10.012 |