%0 Journal Article
%T 关于双树度差下界的一个例子
An Example of the Bound of Double Tree
%A 张雅琴
%J Advances in Applied Mathematics
%P 1615-1619
%@ 2324-8009
%D 2023
%I Hans Publishing
%R 10.12677/AAM.2023.124166
%X 如果图G由两个边不交的生成树的并组成,其中E(G)=E(T1)∪E(T2),且E(T1)∩E(T2)=?那么称图G是双树。本文证明存在一个双树G,对于G任意一个分解f=T1,T2而言(T1,T2是生成树),至少存在一个顶点v∈V(G),使得▏dT1(v)-dT2(v)▏≥2。
If the graph G contains two spanning trees such that the edges of spanning trees are disjoint. And E(G)=E(T1)∪E(T2) and E(T1)∩E(T2)=? , then we call the graph G is double tree. In this pa-per we prove that there exists a double tree graph G, for any decomposition f=T1,T2 (T1,T2 are spanning trees), there exists at least a vertex v∈V(G) such that ▏dT1(v)-dT2(v)▏≥2 .
%K 双树,分解,生成树
Double Tree
%K Decomposition
%K Spanning Tree
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=64524