全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类分数阶薛定谔-泊松系统非平凡解的存在性
Existence of Nontrivial Solution for a Class of Fractional Schro¨dinger-Poisson System

DOI: 10.12677/AAM.2023.124177, PP. 1704-1712

Keywords: 分数阶薛定谔-泊松系统,变号权,非平凡解
Fractional Schro¨dinger-Poisson System
, Sign-Changing Weight, Nontrivial Solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究一类具有变号权的分数阶薛定谔-泊松系统\"\"非平凡解的存在性, 其中\"\" , s, t∈(0, 1) 且 4s + 2t > 3, a(x)∈C(R3) 变号且lim|x|→∞ a(x) = a < 0, \"\". 应用山路引理, 本文得到该系统至少存在一个非平凡解.
In this paper, we are concerned with the existence of nontrivial solution for a class of fractional Schro¨dinger-Poisson system: \"\"where \"\", s, t ∈ (0, 1) and 4s + 2t > 3, a(x) ∈ C(R3) is a sign-changing function with lim|x|→∞ a(x) = a < 0, \"\". By using mountain pass theorem, we obtain that this system has at least one nontrivial solution.

References

[1]  Laskin, N. (2000) Fractional Quantum Mechanics and L′evy Path Integrals. Physics Letters A, 268, 298-305.
https://doi.org/10.1016/S0375-9601(00)00201-2
[2]  Laskin, N. (2002) Fractional Schro¨dinger Equations. Physical Review, 66, 56-108.
https://doi.org/10.1103/PhysRevE.66.056108
[3]  Molica Bisci, G., R?adulescu, V.D. and Servadei, R. (2016) Variational Methods for Nonlocal Fractional Problems. In: Encyclopedia of Mathematics and Its Applications, 162. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781316282397
[4]  Chen, M., Li, Q. and Peng, S.J. (2021) Bound States for Fractional Schro¨dinger-Poisson System with Critical Exponent. Discrete and Continuous Dynamical Systems-Series S, 14, 1819-1835.
https://doi.org/10.3934/dcdss.2021038
[5]  Guo, L. (2018) Sign-Changing Solutions for Fractional Schro¨dinger-Poisson System in R3. Applicable Analysis, 98, 2085-2104.
[6]  Ianni, I. (2013) Sign-Changing Radial Solutions for the Schro¨dinger-Poisson-Slater Problem. Topological Methods in Nonlinear Analysis, 41, 365-385.
[7]  Liu, Z. and Zhang, J. (2017) Multiplicity and Concentration of Positive Solutions for the Fractional Schr¨odinger-Poisson Systems with Critical Growth. ESAIM: Control, Optimisation and Calculus of Variations, 23, 1515-1542.
https://doi.org/10.1051/cocv/2016063
[8]  Luo, H. and Tang, X. (2018) Ground State and Multiple Solutions for the Fractional Schro¨dinger-Poisson System with Critical Sobolev Exponent. Nonlinear Analysis: Real World Applications, 42, 24-52.
https://doi.org/10.1016/j.nonrwa.2017.12.003
[9]  Shen, L. and Yao, X. (2018) Least Energy Solutions for a Class of Fractional Schro¨dinger- Poisson Systems. Journal of Mathematical Physics, 59, Article ID: 081501.
https://doi.org/10.1063/1.5047663
[10]  Sun, X. and Teng, K.M. (2020) Positive Bound States for Fractional Schro¨dinger-Poisson System with Critical Exponent. Communications on Pure and Applied Analysis, 19, 3735- 3768.
https://doi.org/10.3934/cpaa.2020165
[11]  Teng, K.M. (2016) Existence of Ground State Solutions for the Nonlinear Fractional Schro¨dinger-Poisson Systems with Critical Sobolev Exponent. Journal of Differential Equa- tions, 261, 3061-3106.
https://doi.org/10.1016/j.jde.2016.05.022
[12]  Wang, D.B., Zhang, H., Ma, Y. and Guan, W. (2019) Ground State Sign-Changing Solutions for a Class of Nonlinear Fractional Schro¨dinger-Poisson System with Potential Vanishing at Infinity. Journal of Applied Mathematics and Computing, 61, 611-634.
https://doi.org/10.1007/s12190-019-01265-y
[13]  Yu, Y., Zhao, F. and Zhao, L. (2017) The Concentration Behavior of Ground State Solutions for a Fractional Schro¨dinger-Poisson System. Calculus of Variations and Partial Differential Equations, 56, Article No.116.
https://doi.org/10.1007/s00526-017-1199-4
[14]  Yu, Y., Zhao, F. and Zhao, L. (2018) Positive and Sign-Changing Least Energy Solutions for a Fractional Schro¨dinger-Poisson System with Critical Exponent. Applicable Analysis, 99, 2229-2257.
[15]  Zhang, J., do O′ , J.M. and Squassina, M. (2016) Fractional Schro¨dinger-Poisson Systems with a General Subcritical or Critical Nonlinearity. Advanced Nonlinear Studies, 16, 15-30.
https://doi.org/10.1515/ans-2015-5024
[16]  余晓辉. 一类薛定诗-泊松方程解的存在性[J]. 应用数学, 2010, 23(3): 648-652. [17] Willem, M. (1996) Minimax Theorems. Birkha¨user, Bosten.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133